第一天
一、ReLU 激活函数
全称是 Rectified Linear Unit。rectify(修正)可以
理解成马修(0,x),从趋近于零开始,然后变成一条直线。
二、神经网络的监督学习
在监督学习中你有一些输入x,你想学习到一个函数来映射到一些输出y。
1.提到的几种神经网络的用处
图像应用:卷积(Convolutional Neural Network),缩写CNN。
序列数据:种递归神经网络(Recurrent
Neural Network),缩写RNN,如音频处理。
2.神经网络的突破
神经网络方面的一个巨大突破是从 sigmoid 函数转换到一个 ReLU函数。
使用 sigmoid 函数和机器学习问题是,在这个区域,也就是这个 sigmoid 函数的梯度会接近零,所以学习的速度会变得非常缓慢,因为当你实现梯度下降以及梯度接近零的时候,参数会更新的很慢,所以学习的速率也会变的很慢,而通过改变这个被叫做激活函数的东西,神经网络换用这一个函数,叫做 ReLU 的函数(修正线性单元),ReLU 它的梯度对于所有输入的负值都是零,因此梯度更加不会趋向逐渐减少到零。通
过将 Sigmod 函数转换成 ReLU 函数,便能够使得一个叫做梯度下降(gradient descent)的算
法运行的更快。
二、神经网络的监督学习
在神经网络的计算中,通常先有一个叫做前向暂(forward pause)或叫做前向传播(foward propagation)的步骤,接着有一个叫做反向暂停(backward pause) 或叫做反向传播(backward propagation)的步骤
1.二分类(binary classification)
逻辑回归(logistic regression):逻辑回归是一个用于二分类(binary classification)的算法。这里有一个二分类问题的例子,假如你有一张图片作为输入,比如这只猫,如果识别这张图片为猫,则输出标签 1 作为结果;如果识别出不是猫,那么输出标签 0 作为结果。
了保存一张图片,需要保存三个矩阵,它们分别对应图片中的红、绿、蓝三种颜色通道,分别对应图片中红、绿、蓝三种像素的强度值。在二分类问题中,我们的目标就是习得一个分类器,它以图片的特征向量作为输入,然后预测输出结果y为 1 还是 0,也就是预测图片中是否有猫。x:表示一个nx维数据,为输入数据,维度为(nx, 1);
y:表示输出结果,取值为(0,1);
(x(i), y(i)):表示第i组数据,可能是训练数据,也可能是测试数据,此处默认为训练数据;
X=[x(1),x(2)…x(m)]:表示所有的训练数据集的输入值,放在一个nx× m的矩阵中,其中m表示样本数目;
Y =[y(1), y(2)… , y(m)]:对应表示所有训练数据集的输出值,维度为1 ×m。
三、逻辑回归(Logistic Regression)
对于二元分类问题来讲,给定一个输入特征向量x,它可能对应一张图片,你想识别这张图片识别看它是否是一只猫或者不是一只猫的图片,你想要一个算法能够输出预测,你只能称之为少,也就是你对实际值y 的估计。更正式地来说,你想让y帽表示y等于1的一种可能性或者是机会,前提条件是给定了输入特征X。y帽应该在 0 到 1 之间,逻辑回归的输出函数如下:
损失函数又叫做误差函数,用来衡量算法的运行情况,逻辑回归中用到的损失函数如下:
损失函数是在单个训练样本中定义的,它衡量的是算法在单个训练样本中表现如何,为了衡量算法在全部训练样本上的表现如何,我们需要定义一个算法的代价函数,算法的代价函数是对m个样本的损失函数求和然后除以m,在训练逻辑回归模型时候,我们需要找到合适的w和b,来让代价函数 J 的总代价降到最低。代价函数如下: