论文题目:Stackelberg Game-based Computation Offloading Method in Cloud-Edge Computing Networks
目的:边缘云计算卸载的优化策略
针对问题:本文考虑的场景是CS有很多计算任务要执行,而ES有空闲的计算资源。为了降低成本和压力,CS可以将计算任务卸载到具有空闲计算资源的ES。
解决方案:本文提出了一种基于博弈论的计算卸载方法,制定激励机制,鼓励空闲的ES或CS参与任务卸载过程。CS和ESs之间的相互作用被建模为一个Stackelberg博弈,其中CS是领导者,ES是追随者。CS和ES之间的博弈看作是一个单领导多追随者的Stackelberg博弈模型。CS作为领导者给出其支付策略di,ESi充当跟随者以确定从CS接收计算任务Hi的大小。并使用反向归纳法对所提出的博弈进行了分析。证明了博弈可以达到唯一的纳什均衡。然后,提出了一种基于梯度的迭代搜索算法(GISA)来获得最优解,从而最大化CS和ES的效用。此外,还考虑了任务执行时间和ES满意度对CS和ES效用的影响。
(Stackelberg博弈可以用来研究智能理性决策者(参与者)之间的冲突与合作,参与者分为领导者和追随者[25]-[28]。)
结果:最后,数值模拟结果表明,在不同的场景下,我们提出的方法大大优于其他基准方案,并且可以鼓励ESs有效地与CS交换其计算资源,可以很好地鼓励CS和ES之间的合作,以实现双赢。此外此迭代搜索算法算法不仅可以提高CS和ES的效用,还可以达到理想的平衡。