uni-app请求头中携带token

之前做一个前后端分离项目是,用axios进行交互,访问一些有权限的页面时,需要在请求头中携带token值,在uniapp用uni.request发送请求时我发现浏览器中请求头中并没有携带token,有些有权限的页面也无法加载出来。
也找了很多解决方法,基本都是大同小异,发现和我的不太一样,于是就自己弄了一个
首先:
在登陆成功之后,需要把token保存到本地
在这里插入图片描述

然后新建一个request.js文件
我是这样配置的

const BASE_URL = 'http://127.0.0.1:8088'//接口地址
export const http = (options) => {
	return new Promise((resolve,reject) => {
		uni.request({
			url: BASE_URL + options.url,
			method: options.method || 'GET',
			data: options.data || {},
			header: {Authorization:uni.getStorageSync('token')},
			success: (res) => {
					if (res == '') {
					return uni.showToast({
						icon: 'loading',
						title:'获取数据失败'
					})
				}
				resolve(res)
			},
			fail: (err) => {
				return uni.showToast({
					icon: 'loading',
					title:'请求失败'
				})
				reject(err)
			}
		})
	})
}

然后再需要的页面引入
加上了这句 header: {Authorization:uni.getStorageSync(‘token’)} 之后
请求头中携带了token,
在这里插入图片描述

有权限的页面也出来了
终于弄好了

卷积神经网络人脸识别一种基于深度学习的技术,它通过使用卷积神经网络模型对人脸图像进行特征提取和分类,从而实现对人脸的准确识别。 要学习卷积神经网络人脸识别项目,可以先阅读引用[1]提到的三篇文章,这些文章详细介绍了基于卷积神经网络(tensorflow)的人脸识别项目的基本思路和设计方案。 如果对卷积神经网络的概念比较陌生,可以阅读引用提到的文章,了解卷积神经网络的原理和作用。另外,如果对神经网络的训练流程或者环境搭建不熟悉,也可以阅读引用提到的文章,获取相关的知识。 总的来说,卷积神经网络人脸识别项目的实现需要掌握卷积神经网络的基本原理,以及如何使用tensorflow框架进行人脸图像的特征提取和分类。同时,还需要了解人脸识别的整体设计方案和实现流程。 希望以上信息能够帮助到你对卷积神经网络人脸识别的理解和学习。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [【深度学习】基于卷积神经网络(tensorflow)的人脸识别项目(四)](https://blog.csdn.net/qq_45254369/article/details/126492132)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *3* [基于python神经卷积网络的人脸识别](https://download.csdn.net/download/weixin_38557757/13773938)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

田不甜 tbt

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值