2002NOIP普及组真题 4. 过河卒

线上OJ 地址:

【02NOIP普及组】过河卒

核心思想:

对于此类棋盘问题,一般可以考虑 dp动态规划dfs深搜bfs广搜

解法一:dp动态规划

方法:从起点开始逐步计算到达每个位置的路径数。对于每个位置,它的路径数 等于 左边和上边位置的路径数之和(如果存在的话),同时要考虑到不能走被禁止的位置。
状态转移方程 d p [ i ] [ j ] = d p [ i − 1 ] [ j ] + d p [ i ] [ j − 1 ] dp[i][j] = dp[i - 1][j] + dp[i][j - 1] dp[i][j]=dp[i1][j]+dp[i][j1]
状态初始化:

第0行只能从左边转移过来;
第0列只能从上面转移过来;
dp[0][0]为1,表示自己到自己有1种方法。

注意:计算马的屏蔽坐标时不要遗漏马本身
特别注意:虽然只有20个格子,但本题的结果数据很大。开 int 只能60分,需要 开 long long 方能100分。

题解代码:
#include <bits/stdc++.h>
#define ll long long
using namespace std;

const int N = 25;
ll dp[N][N];  // 不开 long long 见祖宗 
bool hasBlock[N][N];  // hasBlock[i][j] 为true,表示该位置被马控制了,不能走 

// 计算不能走的区域(本题为马的控制区域)
void cmp(int x, int y, int n, int m) 
{
    int dx[] = {1, 2, 2, 1, -1, -2, -2, -1};
    int dy[] = {2, 1, -1, -2, -2, -1, 1, 2};
    hasBlock[x][y] = true;  // 马本身的坐标屏蔽 
    for (int i = 0; i < 8; i++) 
    {
        int nx = x + dx[i];
        int ny = y + dy[i];
        if (nx >= 0 && nx <= n && ny >= 0 && ny <= m)   
            hasBlock[nx][ny] = true;  // 马控制的8个区域不能走 
    }
}

int main() 
{
    int n, m, x, y;
    scanf("%d %d %d %d", &n, &m, &x, &y);
    cmp(x, y, n, m);   // 先标记所有不能走的区域 

    memset(dp, 0, sizeof(dp));
	
    dp[0][0] = 1;  // 初始化第一个 
    for(int j = 1; j <= m; j++)  
        if(!hasBlock[0][j])  dp[0][j] = dp[0][j-1];  // 初始化第一行 
    
    for(int i = 1; i <= n; i++)  
        if(!hasBlock[i][0])  dp[i][0] = dp[i-1][0];  // 初始化第一列 
    
    for (int i = 1; i <= n; i++) 
        for (int j = 1; j <= m; j++) 
            if (!hasBlock[i][j]) 
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1];  // 状态转移方程

    cout << dp[n][m] << endl;
    return 0;
}
解法二:dfs深搜

方法:dfs深搜的思路和动态规划类似。从起点开始向下深搜,令 dfs(x, y) 的返回值表示从(x, y)到终点的路径数,则 dfs(x, y) = dfs(x + 1, y) + dfs(x, y + 1);
即 (x, y)到终点的 路径数 等于 它 右边和下边位置的路径数之和(如果存在的话),同时要考虑到不能走被禁止的位置。
注意:为了减少重复计算,采用 记忆化搜索,即
f [ x ] [ y ] = d f s ( x + 1 , y ) + d f s ( x , y + 1 ) ; r e t u r n f [ x ] [ y ] ; f[x][y] = dfs(x + 1, y) + dfs(x, y + 1); return f[x][y]; f[x][y]=dfs(x+1,y)+dfs(x,y+1);returnf[x][y];

这样下一次再深搜到 (x, y)时,可以直接返回f[x][y],不需要再继续dfs。
特别注意:因为 dfs(x, y) 有返回值,所以 dfs 的返回值 类型同样不能是 int,要 开成 long long ,否则只有60%分数。

题解代码:
#include <bits/stdc++.h>
#define ll long long
using namespace std;

const int N = 25;
int n, m, x, y; 
ll f[N][N];  // 不开 long long 见祖宗; f[i][j] 表示从(i, j)走到(n, m)需要的步数 
bool hasBlock[N][N] = {0}; // 标记已访问的点

// 深度优先搜索函数
ll dfs(int x, int y)     // 此处要用到dfs的返回值,不开 long long 见祖宗 
{
    if(f[x][y] != 0)  return f[x][y];   // 记忆化搜索。算过的就不要再算了 
	
    if(x == n && y == m) // 如果到了终点,就返回1,表示有一种方案 
        return 1;

    if(hasBlock[x][y] || x > n || y > m) // 遇到不可行的点,返回0,表示无方案 
        return 0;

    // 本题只能向右和向下,不存在回路,所以不需要visit数组标记是否访问过 
    f[x][y] = dfs(x + 1, y) + dfs(x, y + 1); // 向下移动 +向右移动
    return f[x][y];
}

void cmp(int x, int y, int n, int m) 
{
    int dx[] = {1, 2, 2, 1, -1, -2, -2, -1};
    int dy[] = {2, 1, -1, -2, -2, -1, 1, 2};
    hasBlock[x][y] = true;  // 马本身的坐标屏蔽 
    for (int i = 0; i < 8; i++) 
    {
        int nx = x + dx[i];
        int ny = y + dy[i];
        if (nx >= 0 && nx <= n && ny >= 0 && ny <= m)   
            hasBlock[nx][ny] = true;  // 马控制的8个区域不能走 
    }
}

// dfs
int main() 
{
    scanf("%d %d %d %d", &n, &m, &x, &y);
    cmp(x, y, n, m);   // 计算不能走的区域 
    memset(f, 0, sizeof(f));  // 初始化 
	
    cout << dfs(0, 0);
    return 0;
}
解法三:bfs广搜

方法:从起点(0, 0)开始向右(向下)广搜。令 f[i][j] 表示从(0, 0)走到(i, j)的方案数,则 f[n][m]就是最终要输出的方案数。
我们知道,任何一个坐标要么从上面过来,要么从左面过来(如果存在的话,同时要考虑到不能走被禁止的位置)。所以走到当前位置的方案总数,是走到上面位置的方案总数 + 走到左边位置的方案总数。
核心:在将某个坐标加入广搜队列之前,要先判断该坐标是否已经在队列中。如果不在,就加入队列。如果已经在,就不要重复入队列,只需要更新该(i, j)的 f[i][j] 即可。这样一来,当(i , j)从队列中弹出并参与向后传递时,f[i][j] 的数值是完整的。

我们可能会担心:(i, j) 上一次入队已经出队了,那判断(i, j)是否在队列中是否还有意义。
我们简单模拟一下队列里面的坐标,如下图所示。会发现在栈中,第二次(i, j) 入队列时,第一个(i, j) 还没出队。所以,上述担心不存在。

在这里插入图片描述

#include <bits/stdc++.h>
#define ll long long
using namespace std;

typedef pair<int, int> PII;
const int N = 25;

int n, m;
ll f[N][N];  // 不开 long long 见祖宗 ; f[i][j] 表示从(0, 0)走到(i, j)的方案数 
bool hasBlock[N][N] = {0}; // 标记已访问的点
bool vis[N][N];  // vis[i][j]=true表示坐标(i, j)已经在队列中。用于控制同一个坐标不要重复出现在队列里 

// 深度优先搜索函数
void bfs(int a, int b)     // 此处要用到dfs的返回值,不开 long long 见祖宗 
{
    int dx[] = {1, 0};  // 向右和向下的移动方向
    int dy[] = {0, 1};
	
    queue<PII> q;
    f[0][0] = 1;  // 初始化,从(0, 0)走到(0, 0)有1种方案 
    vis[0][0] = true;
    q.push({0, 0});

    while (!q.empty()) 
    {
        PII u = q.front();
        q.pop();
        
        int x = u.first;
        int y = u.second;

        for (int i = 0; i < 2; i++) 
        {   // 只能向右和向下
            int nx = x + dx[i], ny = y + dy[i];
            if (nx >= 0 && nx <= n && ny >= 0 && ny <= m && !hasBlock[nx][ny]) 
            {
                if (vis[nx][ny] == false) // 如果下一个坐标还没入队列 
                {
                    vis[nx][ny] = true; 
                    f[nx][ny] = f[x][y];  // 则走到当前坐标的方案数就是走到下一个坐标的方案数 
                    q.push({nx, ny});     // 将下一个坐标入队列 
                } 
                else 
                    f[nx][ny] += f[x][y]; // 如果下一个坐标已经在队列中,则不重复入队列,但是需累加当前坐标的方案数
            }
        }
    }	
}

void cmp(int x, int y, int n, int m) 
{
    int dx[] = {1, 2, 2, 1, -1, -2, -2, -1};
    int dy[] = {2, 1, -1, -2, -2, -1, 1, 2};
    hasBlock[x][y] = true;  // 马本身的坐标屏蔽 
    for (int i = 0; i < 8; i++) 
    {
        int nx = x + dx[i];
        int ny = y + dy[i];
        if (nx >= 0 && nx <= n && ny >= 0 && ny <= m)   
            hasBlock[nx][ny] = true;  // 马控制的8个区域不能走 
    }
}

// bfs
int main() 
{
    int x, y;
    scanf("%d %d %d %d", &n, &m, &x, &y);
    cmp(x, y, n, m);   // 计算不能走的区域 
    memset(f, 0, sizeof(f));  // 初始化 
	
    bfs(0, 0);
    cout << f[n][m];
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值