自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(743)
  • 收藏
  • 关注

原创 YOLOv11涨点改进 | HyperACE改进、注意力改进篇 | SCI一区 2024 | YOLOv11引入HIFA全局信息融合增强模块、含多种改进,助力目标检测、医学图像分割、图像分类有效涨点

本文提出基于HIFA全局信息融合增强模块改进的YOLOv11网络模型,显著提升了目标检测性能。HIFA模块巧妙融合局部卷积与全局注意力机制,增强跨尺度特征融合能力,特别在小物体检测和复杂场景下表现优异。同时,该模块优化计算效率,降低特征通道数,适合实时检测任务。文章详细介绍了HIFA模块的原理、结构优势及实现方法,包括完整的核心代码和配置教程。实验证明,改进后的YOLOv11在精度和效率上均有明显提升,能更好地处理多物体、遮挡和光照变化等复杂场景。

2025-11-17 12:51:07 12

原创 YOLOv11涨点改进 | 全网独家创新、检测头Head改进篇 | AAAI 2026 | 使用PATConv改进YOLOv11的检测头,通过并行的卷积和注意力机制,处理小物体、遮挡小目标检测有效涨点

本文提出一种改进YOLOv11检测头的方法,通过引入PATConv模块实现并行的卷积和注意力机制。该模块采用部分通道机制(PCM),将特征图划分为不同子集分别处理,显著提升了检测精度和推理速度。PATConv结合了通道注意力、空间注意力和自注意力机制,有效增强了特征交互能力,在处理小目标、遮挡和复杂背景时表现突出。实验表明,该方法在保持较低参数量和计算量的同时,优化了速度与精度的平衡。文章详细介绍了模块结构、实现代码和配置步骤,为实时目标检测任务提供了高效解决方案。

2025-11-16 23:51:46 20

原创 YOLOv11涨点改进 | 独家首发创新、Conv卷积改进篇 | AAAI 2026 | YOLOv11利用PATConv部分注意力卷积,含PATConvC3k2二次创新,轻量化改进,有效涨点改进点

本文提出了一种创新的部分注意力卷积模块PATConv,通过并行化卷积和注意力机制显著提升了YOLOv11模型的效率和性能。PATConv采用部分通道机制(PCM),将特征图分割为不同部分分别处理,减少了计算量和内存占用。实验表明该模块在保持精度的同时提高了推理速度,特别适用于实时目标检测任务。文章详细介绍了PATConv的网络结构、原理和优势,并提供了模块实现代码和YOLOv11改进配置方法。通过在ImageNet-1K分类和COCO检测任务上的测试,验证了PATConv在计算效率和检测精度方面的优越表现。

2025-11-16 23:48:05 17

原创 YOLOv11涨点改进 | 首发全网创新、主干改进篇 | AAAI 2026 | PartialNet 主干让 YOLOv11 更加强大!引入部分通道机制 和 部分注意力卷积,全方面提升了模型的性能

本文提出PartialNet主干网络改进YOLOv11的方法,通过部分通道机制(PCM)和部分注意力卷积(PATConv)提升模型效率。PartialNet将特征图通道拆分并应用不同操作,显著减少计算量和内存占用。主要创新包括:1)部分通道机制实现计算优化;2)三种注意力模块(PATch/PATsp/PATsf)增强特征提取;3)动态部分卷积(DPConv)自适应调整计算复杂度。文章详细提供了代码实现和YOLOv11集成方法。

2025-11-16 23:45:14 29

原创 YOLOv11涨点改进 | 独家创新、注意力改进篇 | CVPR 2024 | YOLOv11引入MaSA曼哈顿自注意力、含多种改进,助力目标检测、图像分割、图像分类有效涨点

本文提出了一种基于MaSA(曼哈顿自注意力)模块的YOLOv11改进方法。MaSA通过引入曼哈顿距离的空间衰减矩阵,增强了模型对空间信息的感知能力,显著提升了目标检测性能。该方法在复杂背景、边缘细节和小物体检测上表现优异,同时降低了计算复杂度。文章详细介绍了MaSA模块的原理、结构和实现方式,包括完整的核心代码和集成到YOLOv11的具体步骤。实验结果表明,改进后的模型在ImageNet-1k分类任务上达到84.8%-86.1%的top-1准确率,在COCO检测任务上实现54.5 boxAP。

2025-11-16 23:41:08 12

原创 YOLOv11涨点改进 | 独家下采样创新改进篇 | TGRS 2024 | YOLOv11引入WTFD小波变换特征分解下采样模块,适合遥感图像分割任务、遥感目标检测任务有效涨点

本文提出一种基于WTFD模块改进的YOLOv11目标检测方法。WTFD模块通过Haar小波变换将空间特征分解为低频和高频成分,有效引入频域信息补充空间特征,显著提升模型在复杂背景下的检测精度,特别是对小物体、边缘和阴影区域的识别能力。该模块在不增加计算负担的情况下,通过多尺度特征融合增强了模型的鲁棒性。文章详细介绍了WTFD模块的原理、代码实现及YOLOv11的改进方案,提供两种网络配置版本,验证了该方法的有效性。该方法适用于实时目标检测任务,在保持计算效率的同时显著提升检测性能。

2025-11-16 23:37:31 13

原创 YOLOv11涨点改进 | 独家创新、Neck特征融合改进篇 | TGRS 2024 | 引入 EFC增强跨层特征相关创新点,含MSEF(多尺度有效融合模块)二次创新模块,助力遥感目标检测涨点

本文提出基于增强跨层特征相关(EFC)模块改进的YOLOv11网络,通过分组特征聚焦(GFF)和多层特征重建(MFR)提升小物体检测性能。EFC模块增强不同层次特征间的相关性,减少冗余特征并提高融合效率,有效保留小物体关键信息。实验表明,该方法在VisDrone等数据集上mAP提升1.7%,同时降低计算资源消耗。EFC模块具有即插即用特性,可灵活应用于各类基于FPN的网络结构,显著提升小物体检测精度并优化计算效率。

2025-11-16 23:34:40 11

原创 YOLOv11涨点改进 | 独家创新、Conv卷积改进篇 | CVPR 2024 | 引入FADC频率自适应膨胀卷积,提升特征提取能力、扩大感受野、减少伪影,助力小目标检测,遥感目标检测有效涨点

本文提出了一种频率自适应扩张卷积(FADC)模块来改进YOLOv11模型。FADC通过动态调整膨胀率和优化卷积核的频率响应,显著提升了模型处理不同频率特征的能力。该模块包含三个创新组件:自适应膨胀率机制根据局部频率内容动态调整扩张率;自适应卷积核将权重分解为高低频分量;频率选择模块平衡特征图的频域成分。实验表明,FADC有效避免了传统膨胀卷积的网格伪影,增强了高频细节的捕捉能力,在保持计算效率的同时提升了目标检测精度,特别是在多物体和密集场景中表现突出。

2025-11-16 23:30:22 16

原创 YOLOv13涨点改进 | 全网独家创新、检测头Head改进篇 | | AAAI 2026 | 使用PATConv改进YOLOv13的检测头,通过并行的卷积和注意力机制,处理小物体、遮挡小目标检测有效

本文提出了一种改进YOLOv13检测头的方法,通过引入PATConv模块将并行卷积和注意力机制结合,显著提升了目标检测的性能。PATConv通过部分通道机制(PCM)对特征图进行分割处理,分别应用卷积和注意力操作,有效平衡计算效率与精度。实验表明,该方法在减少参数量的同时保持高精度,特别适用于小物体检测和实时任务。文章详细介绍了PATConv的网络结构、原理、优势及实现代码,并提供了模块添加和配置文件修改的具体步骤,为YOLOv13的改进提供了实用方案。

2025-11-16 23:24:57 18

原创 YOLOv13涨点改进 | 独家首发创新、Conv卷积改进篇 | AAAI 2026 | YOLOv13利用PATConv部分注意力卷积,含PATConvC3k2二次创新,轻量化改进,有效涨点改进点

本文提出了一种改进YOLOv13网络的PATConv部分注意力卷积模块,通过并行化卷积和注意力机制显著提升了模型计算效率和推理速度。PATConv将特征图通道划分为不同部分,分别进行卷积、注意力等操作,减少了计算量和内存占用,同时保持了较高的检测精度。实验表明,改进后的模型在ImageNet分类和COCO检测任务中表现优异,尤其适合实时目标检测任务。文章详细介绍了PATConv的原理、网络结构、核心代码实现,以及修改YOLOv13配置的具体方法,并提供了两种改进版本的yaml配置文件。

2025-11-16 23:08:45 21

原创 YOLOv13涨点改进 | 首发全网创新、主干改进篇 | AAAI 2026 | PartialNet 主干让 YOLOv13 更加强大!引入部分通道机制 和 部分注意力卷积,全方面提升了模型的性能

本文提出改进YOLOv13主干网络的PartialNet,通过引入部分通道机制(PCM)和部分注意力卷积(PATConv),显著提升计算效率和推理速度,同时保持高检测精度。PartialNet将特征图通道分割并应用不同操作,减少计算量和内存占用,特别适合实时目标检测。动态部分卷积(DPConv)自适应调整计算复杂度,实现精度与速度的平衡。实验表明,PartialNet在ImageNet-1K和COCO数据集上优于SOTA模型,尤其适用于边缘设备。提供三种主干改进方案(PartialNet_s/m/l)

2025-11-16 22:13:29 270

原创 YOLOv13涨点改进 | HyperACE改进、注意力改进篇 | CVPR 2024 | YOLOv13引入MaSA曼哈顿自注意力、含多种改进,助力目标检测、图像分割、图像分类有效涨点

本文提出HIFA模块改进YOLOv13网络,显著提升目标检测精度与效率,尤其在小物体检测和复杂场景表现突出。HIFA通过融合局部与全局信息增强跨尺度特征提取,同时优化计算效率。此外,引入MaSA曼哈顿自注意力模块,基于曼哈顿距离构建空间衰减矩阵,为自注意力机制添加显式空间先验知识,在ImageNet-1K分类任务上达到84.8%准确率。文章详细介绍了模块结构、优势原理和实现代码,并提供了三种改进方案的yaml配置文件,指导如何集成到YOLOv13框架中。

2025-11-16 17:54:15 14

原创 YOLOv13涨点改进 | 独家下采样创新改进篇 | TGRS 2024 | YOLOv13引入WTFD小波变换特征分解下采样模块,适合遥感图像分割任务、遥感目标检测任务有效涨点

本文提出了一种基于小波变换特征分解器(WTFD)的YOLOv13改进模型,通过Haar小波变换将空间特征分解为低频和高频成分,有效补充频域信息。WTFD模块能够增强模型对复杂背景、阴影、边缘和小物体等细节特征的检测能力,显著提升目标检测精度和鲁棒性。该方法在不增加计算负担的情况下优化了检测性能,适用于实时检测任务。实验结果表明,改进后的YOLOv13模型在保持高效计算的同时,提高了检测精度,尤其在小目标检测任务中表现突出。

2025-11-16 17:16:58 19

原创 YOLOv13涨点改进 | HyperACE改进、注意力改进篇 | SCI一区 2024 | YOLOv13引入HIFA全局信息融合增强模块、含多种改进,助力目标检测、医学图像分割、图像分类有效涨点

本文提出了一种改进YOLOv13网络模型的HIFA(全局信息融合增强)模块,通过融合局部卷积和全局操作,显著提升了目标检测性能。HIFA模块在小物体检测、复杂背景处理和多尺度目标检测方面表现优异,能够同时捕捉细节特征和全局语义信息。该模块还优化了计算效率,减少特征通道数,适用于实时检测任务。文章详细介绍了HIFA模块的结构、优势原理,并提供了完整的实现代码和配置方法,包括三种改进方案(单独HIFA、HIFA+HyperACE、HIFA+DSC3k2)的yaml配置文件。

2025-11-16 16:14:26 445

原创 YOLOv13涨点改进 | 独家创新、Neck特征融合改进篇 | TGRS 2024 | 引入 EFC增强跨层特征相关创新点,含MSEF(多尺度有效融合模块)二次创新模块,助力遥感目标检测涨点

本文提出EFC(增强跨层特征相关)模块改进YOLOv13模型,显著提升小目标检测性能。EFC通过分组特征聚焦(GFF)和多层特征重建(MFR)增强特征融合效率,在小目标检测任务中平均精度(mAP)提升1.7%,同时减少模型计算量。实验验证EFC在VisDrone等数据集上的有效性,改进后的模型能更好地保留小目标细节信息。还提出二次创新模块MSEF,集成通道和位置注意力机制,进一步优化特征表达。文章详细介绍了模块配置方法和yaml文件修改步骤,为小目标检测任务提供了实用的改进方案。

2025-11-16 15:27:23 145

原创 YOLOv13涨点改进 | 独家创新、Conv卷积改进篇 | CVPR 2024 | 引入FADC频率自适应膨胀卷积,提升特征提取能力、扩大感受野、减少伪影,助力小目标检测,遥感目标检测有效涨点

本文提出了一种基于FADC模块改进的YOLOv13模型,通过动态调整膨胀率(AdaDR)和优化卷积核频率响应(AdaKern)来提升模型性能。FADC模块能够自适应地处理不同频率特征,有效避免了标准膨胀卷积中的网格伪影问题,在处理高频细节(如物体边界和小物体)时表现优异。此外,频率选择模块(FreqSelect)通过动态平衡高低频成分,提高了模型在复杂背景下的检测精度。实验表明,该改进显著提升了YOLOv13在多物体和密集场景中的目标检测能力。文章详细介绍了模块实现、代码配置及YAML文件修改方法。

2025-11-16 12:49:57 48

原创 【DEIM创新改进】全网首发Conv独家改进篇 | CVPR 2024 | 引入FADC频率自适应膨胀卷积,提升特征提取能力、扩大感受野、减少伪影,助力小目标检测,遥感目标检测有效涨点

本研究提出FADConv(频率自适应扩张卷积)模块,有效改进了DEIM模型的目标检测性能。通过动态调整膨胀率和优化卷积核频率响应,FADConv显著提升了模型处理不同频率特征的能力。其核心创新包括: 自适应膨胀率机制,根据局部频率内容动态调整膨胀率 卷积核分解技术,将权重分解为高低频成分并动态调节比例 频率选择模块,优化特征表征中的频率成分平衡 实验证明,FADConv在分割和目标检测任务中都展现出优越性能,特别是在处理高频细节(如物体边界)时表现突出,同时计算效率较高。

2025-11-15 23:28:50 177

原创 【DEIM创新改进】全网独家、卷积创新改进篇 | Arxiv 2025 | 引入一种新的wConv2d加权卷积改进DEIM模型,显著提升其特征提取能力和目标检测精度,助力有效涨点

本文提出了一种创新的加权卷积(WConv)方法,通过引入最优密度函数动态调整邻域像素权重,显著提升了目标检测性能。该方法在DEIM模型中应用后,不仅提高了检测精度(如VGG准确率从56.89%提升至66.94%),还增强了小物体检测能力并减少了背景干扰。核心创新点包括:1) 基于像素距离的自适应权重分配;2) 保持参数数量不变的情况下优化特征提取;3) 适用于2D/3D数据的通用框架。实验表明,WConv在图像去噪等任务中能降低最多53%的损失,虽然增加11%计算时间,但显著提升了模型性能。

2025-11-15 23:12:26 37

原创 【DEIM创新改进】全网独家、卷积创新改进篇 | CVPR 2024 | 引入SFSConv空间频率选择卷积改进DEIM,空间频率特征协同作用,助力目标检测,红外小目标检测有效涨点

本文提出了一种轻量级目标检测模块SFS-Conv,通过分流-感知-选择策略整合空间与频率信息,在提升性能的同时保持模型轻量化。该模块包含空间感知单元(SPU)、频率感知单元(FPU)和无参通道选择单元(CSU),能有效增强特征多样性和判别力。实验表明,基于SFS-Conv构建的SFS-CNet在多个SAR数据集上达到SOTA性能,参数量仅为YOLOv8s的18%,检测精度达96.2%-99.6%。文章详细介绍了模块结构、优势及代码实现,并提供了集成到DEIM框架的完整教程。

2025-11-15 23:03:31 17

原创 【DEIM创新改进】全网独家、卷积创新改进篇 | ECCV 2024 | DEIM引入WTConv小波卷积, 能够更有效地捕捉局部和全局特征, 助力高效涨点

本文提出了一种新型WTConv小波卷积模块,通过融合小波变换有效提升了深度卷积网络的性能。该模块仅需对数级参数增长即可实现全局感受野,显著增强了网络对低频信息和形状特征的捕捉能力。实验证明,WTConv在ImageNet分类等视觉任务中表现出色,同时提高了模型对图像损坏的鲁棒性。作为即插即用模块,WTConv可直接替代现有架构中的深度可分离卷积层,且计算成本更低。文章详细介绍了模块原理、核心代码实现及在DEIM模型中的集成方法,为计算机视觉任务提供了有效的改进方案。

2025-11-15 22:35:05 20

原创 【DEIM创新改进】全网独家、卷积创新改进篇 | CVPR 2024 | DEIM引入DynamicConv高效动态卷积,通过动态调整卷积核权重的方式来实现卷积操作的增强模块,轻量高效涨点改进

本文提出了一种基于DynamicConv动态卷积的DEIM模型优化方法,通过多专家机制在增加模型参数量的同时保持较低计算复杂度(FLOPs),有效解决低FLOPs模型在大规模预训练中的性能瓶颈。该方法创新性地将参数数量与计算开销分离,使模型能够充分利用大规模视觉预训练优势。实验表明,改进后的ParameterNet-600M在ImageNet上性能优于SwinTransformer,且FLOPs更低。本文还提供了详细的代码实现、模块添加步骤和多种配置方案,为研究者提供了一套完整的轻量高效模型改进方案。

2025-11-15 22:24:01 63

原创 【DEIM创新改进】全网独家、卷积创新改进篇 | CVPR 2023 | 一种新颖的部分卷积(PConv)轻量高效, 适合图像分类、目标检测和分割等各种视觉任务

本文提出了一种基于PConv(部分卷积)的DEIM模型改进方案。PConv通过仅对部分输入通道进行卷积处理,显著减少了计算量和内存访问,同时保持模型精度。相比传统卷积,PConv具有更低的FLOPs和更高的FLOPS效率。文章详细介绍了PConv的结构原理、核心代码实现以及在DEIM模型中的应用方法,包括三种不同版本的改进配置方案。实验表明,采用PConv的DEIM模型在保持准确率的同时,能大幅提升推理速度,适用于各类视觉任务。该改进方案操作简单,效果显著,为神经网络优化提供了新思路。

2025-11-15 22:09:30 14

原创 【DEIM创新改进】全网独家、卷积创新改进篇 | TIP 2024顶刊 | DEIM引入DEConv细节增强卷积模块, 能够恢复更多细节信息,提升目标检测精度

本文提出了一种新型细节增强卷积(DEConv)模块,通过融合梯度先验信息显著提升了图像特征提取能力。该模块将传统卷积与多种差异卷积(CDC/ADC/HDC/VDC)相结合,有效捕捉边缘纹理等细节特征,同时采用重参数化技术避免额外计算开销。实验表明,DEConv在去雾任务中仅需3.653M参数即可达到41dB PSNR,优于现有方法。此外,该模块可灵活集成到目标检测网络中,通过增强细节恢复能力和目标定位精度,显著提升模型在复杂场景下的泛化性能。配套提供的代码实现和配置文件简化了模块集成过程。

2025-11-15 21:53:34 21

原创 【DEIM创新改进】全网独家、卷积创新改进篇 | SCI 2024 | DEIM引入LDConv线性可变形卷积,以任意形状和大小的卷积核来提取特征,弥补了标准卷积的不足,助力目标检测有效涨点

本文提出了一种新型线性可变形卷积(LDConv)模块,用于优化DEIM目标检测模型。该模块突破了标准卷积和可变形卷积的局限:1)支持任意参数数量的卷积核;2)允许任意采样形状;3)参数数量呈线性增长趋势,相比传统方法的平方增长更具优势。LDConv通过动态调整采样形状来适应不同目标变化,可替代标准卷积实现即插即用的性能提升。实验表明,LDConv在COCO2017、VOC等数据集上显著提升了检测性能。文章详细介绍了模块原理、核心代码实现及使用方法,为网络性能与开销的平衡提供了新思路。

2025-11-15 21:42:00 15

原创 【DEIM创新改进】全网独家、卷积创新改进篇 | CVPR 2023 | DEIM引入SCConv空间和通道重构卷积,既轻量又涨点,助力DEIM有效涨点

本文提出了一种名为SCConv(空间和通道重构卷积)的模块,用于改进DEIM网络模型。该模块通过减少卷积神经网络中的空间和通道特征冗余,显著提高模型效率与性能。SCConv包含两个核心单元:空间重构单元(SRU)采用分离-重构方法抑制空间冗余;通道重构单元(CRU)使用分割-变换-融合策略减少通道冗余。实验表明,该模块在图像分类和目标检测任务中能有效降低计算成本,同时提升模型性能。文章详细介绍了SCConv的工作原理、模块结构、核心代码实现,并提供了将SCConv集成到DEIM模型的具体步骤和多种改进方案。

2025-11-15 21:24:43 13

原创 【DEIM创新改进】全网首发Conv独家改进篇 | CVPR 2024 | 引入StarConv星星卷积改进DEIM目标检测模型,轻量化改进,提升小目标检测、复杂背景处理和多尺度目标识别,有效涨点

本文提出了一种基于StarConv模块改进的DEIM网络模型,该模块通过元素级乘法(星操作)实现高效特征融合,显著提升了小物体检测、复杂背景处理和多尺度目标识别的精度。StarConv模块通过高维特征映射增强模型表达能力,在保持低计算开销的同时,提高了检测鲁棒性和多模态数据适应性。实验表明,该方法无需复杂结构或精细调参即可获得优异性能,适用于图像分类、自然语言处理等任务。文章详细介绍了StarConv原理、网络结构、核心代码及部署方法,为高效网络设计提供了新思路。

2025-11-15 21:13:09 16

原创 【DEIM创新改进】全网独家创新、特征融合改进篇 | CVPR 2024 | 引入LGAG大核分组注意门控融合模块,允许相关特征的激活和抑制不相关特征,助力目标检测涨点效果明显

本文提出了一种创新的LGAG(大核分组注意门控)模块,用于优化DEIM医学图像分割模型。该模块通过多尺度深度卷积和门控注意力机制,有效融合特征图,增强相关特征并抑制无关特征。实验表明,改进后的DEIM模型在12个医学图像数据集上实现了SOTA性能,参数量(#Params)和计算量(#FLOPs)分别降低79.4%和80.3%。文章详细介绍了LGAG模块的网络结构、核心代码实现及在DEIM模型中的集成方法,包括创建不同改进版本的yml配置文件。该创新模块具有计算高效、扩展性强等特点。

2025-11-15 20:42:00 21

原创 【DEIM创新改进】全网独家创新、特征融合改进篇 | SCI 2024 | DEIM引入ASF-YOLO中的CPAM 通道和位置注意力融合机制,助力于小目标检测高效涨点

本文提出一种基于CPAM模块改进的DEIM网络模型,通过融合通道和位置注意力机制,显著提升了对小物体、复杂背景及多尺度目标的检测性能。CPAM模块包含通道注意力(聚焦重要特征通道)和位置注意力(精确定位空间信息)两个核心组件,有效解决了传统方法在小物体检测和多尺度融合上的不足。实验证明,该方法在保持计算效率的同时,具有更高的检测精度和鲁棒性,特别适用于医学图像等复杂场景。文章详细介绍了模块原理、代码实现和配置步骤,为相关研究提供了可复现的技术方案。

2025-11-15 19:56:30 30

原创 【DEIM创新改进】全网独家创新、特征融合改进篇 | SCI一区 2025 | DEIM模型引入引入PSFM高频与低频特征融合模块,助力高效涨点发论文

本文提出了一种基于PSFM(渐进式语义特征融合模块)的DEIM网络改进方案,用于提升红外与可见光图像融合的性能。PSFM通过高频与低频特征融合,结合渐进语义注入和场景保真度约束,显著提升了融合图像对高级视觉任务的适用性。该模块包含语义感知分支和场景恢复分支,确保融合特征既满足语义需求又保留源图像完整信息。实验表明,PSFM在视觉吸引力和语义表达方面优于现有方法,且能适应恶劣环境。文章详细提供了PSFM的代码实现、DEIM集成方法和模型配置方案,为相关研究提供了实用参考。

2025-11-15 19:38:46 41

原创 【DEIM创新改进】全网独家创新、特征融合改进篇 | CVPR 2024 | 引入BIEF特征交互融合模块,轻松应对噪声和遮挡的目标检测挑战,助力DEIM目标检测任务有效涨点

本文提出了一种基于BIEF特征交互融合模块改进的DEIM模型,通过双边事件挖掘和互补网络(BMCNet)提升事件流超分辨率(ESR)性能。该模型采用双流网络结构分别处理正负事件,并引入创新的双边信息交换(BIE)模块,实现层级信息传播和交叉注意力机制。BIEF模块通过通道维度建模事件相关性,有效缓解噪声干扰,增强正负事件互补性,在合成和真实数据集上性能提升超过11%。文章详细介绍了BIEF模块的网络结构、设计动机、核心代码及在DEIM模型中的集成方法,为复杂场景下的目标检测提供了新的技术方案。

2025-11-15 18:21:46 31

原创 【DEIM创新改进】全网独家创新、特征融合改进篇 | BIBM 2024| 引入MPCA多尺度渐进通道注意力融合模块,增强多尺度特征学习能力和细节捕捉能力,助力DEIM模型目标检测任务,有效涨点

本文提出了一种改进DEIM网络模型的MPCA模块,旨在增强多尺度特征学习和细节捕捉能力。MPCA模块通过融合相邻编码层特征图,提升模型对物体纹理和边界的感知能力,显著提高小物体检测和复杂背景下的检测精度。该模块避免了特征冗余,增强了模型鲁棒性且计算开销较低。文章详细介绍了MPCA模块的结构、原理、优势及实现代码,并提供了在DEIM网络中添加该模块的具体步骤。实验证明,改进后的模型在医学图像分割等任务中性能优于现有方法。

2025-11-15 17:01:07 14

原创 【DEIM创新改进】全网独家创新、特征融合改进篇 | KBS 2024 | DEIM模型引入GFM全局融合模块,通过全局特征融合、注意力机制和跨模态信息的有效整合,助力有效涨点

本文提出了一种基于GFM全局融合模块改进的DEIM目标检测模型。GFM模块通过元素级融合、特征级拼接和注意力机制,有效整合RGB和深度图像的互补信息,增强模型在复杂场景下的检测能力,特别是在小物体、低光照和复杂背景条件下表现优异。该模块采用深度可分离卷积和注意力机制优化计算效率,在保持高性能的同时降低计算复杂度。实验结果表明,改进后的DEIM模型显著提升了检测精度,并减少了模型参数量。文章详细介绍了GFM模块的实现原理、结构优势以及在DEIM中的应用方法,为研究者提供了完整的代码实现和模型配置方案。

2025-11-15 16:24:38 21

原创 【DEIM创新改进】全网独家创新、特征融合改进篇 | SCI一区 2024 | DEIM模型引入MAFM多尺度感知融合模块,有效捕捉低级特征(如纹理和边缘),在多模态检测、目标检测等任务有效涨点

MAFM模块创新改进DEIM模型,显著提升RGB-D显著性检测性能 本文提出一种多尺度感知融合模块(MAFM),通过优化RGB与深度图像的特征融合,显著提升了DEIM模型在低光照、复杂背景和小物体检测中的性能。MAFM采用深度可分离卷积和多头混合卷积,在减少计算复杂度(9.9GFLOPs)的同时保持高精度,有效融合纹理细节和空间结构信息。实验表明,改进后的模型参数量仅16.1M,在六个数据集上表现出色,特别在复杂场景下展现出更强的鲁棒性和适应性。

2025-11-15 16:13:54 154

原创 【DEIM创新改进】全网独家创新、特征融合改进篇 | TGRS 2025顶刊 | DEIM 引入MSCA多尺度稀疏交叉聚合,助力遥感目标检测、目标检测任务有效涨点

本文提出了一种基于MSCA多尺度稀疏交叉融合模块的DEIM模型优化方法,通过有效融合多尺度特征并减少无关信息干扰,显著提升目标检测性能。MSCA模块采用多尺度池化操作捕捉图像特征,结合稀疏注意力机制聚焦关键信息,实现动态特征融合。文章详细介绍了模块实现代码、模型集成步骤及配置文件修改方法,提供了三种不同规模模型的改进方案(hgnetv2_n/s/l)。实验结果表明该方法能有效提升分类精度,为遥感场景分类研究提供了新的技术思路。

2025-11-15 15:31:50 194

原创 【DEIM创新改进】全网独家创新、特征融合改进篇 | AAAI 2025 | 引入HS-FPN中的SDP空间依赖感知模块创新点,捕获相邻像素间的空间依赖,助力DEIM目标检测有效涨点

本文提出了一种改进的HS-FPN特征金字塔网络,通过引入高频感知模块(HFP)和空间依赖感知模块(SDP)优化DEIM模型。HFP模块利用高通滤波器增强小目标特征,SDP模块则捕获相邻像素间的空间依赖性。实验表明,该方法在AI-TOD和DOTAmini10等小目标检测数据集上显著提升了性能。文章详细介绍了模块实现代码、改进步骤和配置文件修改方法,为小目标检测提供了有效的技术方案。

2025-11-15 15:16:34 67

原创 【DEIM创新改进】全网独家创新、特征融合改进篇 | CVPR 2025 | DEIM引入FEFM的二次创新CFEM交叉融合增强模块,适合小目标检测、助力DEIM有效涨点-(全网独家创新首发)

本文提出了一种基于CFEM(交叉融合增强模块)的目标检测改进方法。该模块通过强化RGB与NIR图像的共性特征并补充差异性高频纹理信息,有效提升了复杂场景下的检测精度。CFEM由交叉注意力机制和强度增强层组成,能更好地处理低光、遮挡等挑战性环境。实验表明,相比传统融合方法,CFEM可显著提升小目标检测能力。文章详细介绍了模块结构、实现代码以及在DEIM框架中的集成方法,为图像处理研究提供了新的技术思路。该方法适用于低光增强、去噪等多种计算机视觉任务。

2025-11-15 14:58:23 57

原创 【DEIM创新改进】全网独家创新、注意力改进篇 | SCI一区 2025 | DEIM引入FSSA傅里叶域稀疏自注意力,助力遥感小目标检测、目标检测、红外小目标检测有效涨点

🔥本文给大家介绍FSSA模块改进DEIM网络模型,能够显著提升模型的目标检测性能,特别是在处理高频纹理、复杂背景和细节恢复方面。FSSA通过傅里叶变换和稀疏自注意力机制增强了全局特征建模能力,提升了图像细节的重建,尤其是在小物体和复杂环境中。它有效地抑制噪声,减少计算复杂度,并改善模型对细小特征的敏感度,从而提高检测精度、鲁棒性和效率,尤其适用于遥感图像和高噪声环境中的目标检测任务。

2025-11-14 23:26:25 29

原创 【DEIM创新改进】全网独家创新、注意力改进篇 | CVPR 2024 | DEIM引入SHSA单头自注意力模块,轻量化改进,助力所有目标检测任务高效涨点

🔥本文给大家介绍使用SHSA(Single-Head Self-Attention)模块改进DEIM网络模型,可以显著减少计算冗余和内存占用,提升计算效率和推理速度。SHSA通过使用单个注意力头代替多头注意力机制,优化了模型的计算资源使用,同时在保持高精度的基础上加速了推理过程。该模块特别适合在资源受限的设备上运行,提供更高的速度与精度平衡,提升了DEIM在不同硬件平台上的整体性能,尤其在实时目标检测任务中表现尤为出色。

2025-11-14 23:21:58 24

原创 【DEIM创新改进】全网独家创新、注意力改进篇 | CVPR 2025 | DEIM引入SSA序列打乱注意力模块,助力目标检测任务有效涨点

🔥本文给大家介绍将 Sequence Shuffle Attention (SSA) 模块改进DEIM网络模型,可以显著提升模型的性能。SSA 通过捕捉长程依赖关系、保持图像的局部性与连续性,增强了对复杂场景和小目标的检测能力。同时,SSA 高效地聚合来自不同扫描方向的特征,减少冗余计算,提高了多尺度目标检测的精度和效率。其自适应的注意力机制也帮助 DEIM 精确分类与定位目标,提升了模型在复杂和干扰环境中的鲁棒性与稳定性。

2025-11-14 23:16:28 30

原创 【DEIM创新改进】全网独家创新、注意力改进篇 | SCI一区 2023 | 手把手教你在DEIM上使用LSKAttention大核注意力机制、含LSKASPPF二次创新模块,助力小目标检测有效涨点

🔥本文提出LSKA大核注意力机制优化DEIM模型,通过将2D卷积核分解为级联的水平与垂直1D核,显著降低计算复杂度和内存占用。LSKASPPF二次创新模块在图像分类、目标检测等任务中保持LKA性能的同时,展现出更强的鲁棒性。实验表明,该方法在多种视觉任务上优于ViTs和ConvNeXt,特别适合大核卷积场景。文章详细介绍了LSKA模块原理、代码实现及DEIM集成方法,并提供了三种改进配置方案,为计算机视觉研究提供了高效创新思路。

2025-11-14 23:10:55 19

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除