每天更新中,YOLOv8和YOLOv10通用,限时199元本专栏保证更新300+篇改进,包含各种卷积、主干网络、各种注意力机制、检测头、损失函数、二次创新模块、独家创新等几百种创新点改进。限时99元去b站关注:AI缝合怪订阅YOLOv8v10 创新改进高效涨点,订阅专栏的小伙伴私信博主邀你进群,获取完整一键运行项目。
YOLOv8v10有效涨点专栏目录
(订阅的小伙伴,终身免费享有后续YOLOv11或是其他版本的改进专栏)
试读篇
【试读1】YOLOv10通俗易懂!手把手教大家利用yolov10训练自己的数据集(环境搭建,YOLOv10网络结构解读 、yolov10.yaml配置文件详细解读与说明、模型训练参数详细解析)
【试读3】YOLOv10改进 | 注意力改进篇 | YOLOv10引入Bi-level Routing Attention --简称BRAttention注意力模块(来自CVPR2023)
【试读4】YOLOv10改进 | Conv篇 | YOLOv10引入AKConv卷积和C2f-AKConv(既轻量又提点)
卷积改进篇
【2】YOLOv10改进 | Conv篇 | YOLOv10引入AKConv卷积和C2f-AKConv(既轻量又提点)
【3】YOLOv10改进 | Conv改进篇 | YOLOv10引入LDConv卷积和C2f-LDConv全网独家创新(来自SCI 2024)
【4】YOLOv10改进 | Conv篇 | YOLOv10引入SPDConv卷积特征无损下采样模块(助力小目标任务高效涨点)
【5】YOLOv10改进 | Conv篇 | YOLOv10添加SCConv空间和通道重构卷积(来自CVPR2023论文,既轻量又涨点,助力于小目标任务涨点)
【6】YOLOv10改进 | Conv篇 | YOLOv10添加RFAConv一种新的感受野注意力卷积模块(提高特征提取的精确性)
【7】YOLOv10改进 | Conv篇 | YOLOv10添加Mamba模块 (Mamba-Yolov10为目标检测、医学图像分割等任务带来新的发展和进步)
【8】YOLOv10改进 | Conv篇 | YOLOv10利用DualConv轻量级双卷积模块二次创新C2f降低计算成本和参数数量(提高目标检测速度)
【9】YOLOv10改进 | Conv篇 | YOLOv10引入RCS-YOLO中的RCSOSA以提取更丰富的信息并减少时间消耗(助力于脑肿瘤目标检测任务)
注意力改进篇
【1】YOLOv10改进 | 注意力改进篇 | YOLOv10引入Bi-level Routing Attention --简称BRAttention注意力模块(来自CVPR2023)
【2】YOLOv10改进 | 注意力改进篇 | YOLOv10引入MSDA多尺度空洞注意力模块(来自TMM 2023)
【3】YOLOv10改进 | 注意力改进篇-图像去雾 | YOLOv10引入FCAttention捕捉全局和局部信息交互即插即用注意力模块(来自2024 SCI 一区)
【4】YOLOv10改进 | 注意力篇 | 手把手教你在YOLOv10上缝合高效多尺度注意力(EMA)模块(图像分类和目标检测等任务通用)ICASSP2023中稿论文
【5】YOLOv10改进 | 注意力篇 | 手把手教你在YOLOv10上添加LSKAttention大核注意力机制(助力小目标检测极限涨点)
【6】YOLOv10改进 | 注意力篇 | YOLOv10上添加CAA注意力捕捉长距离的上下文信息(助力目标检测任务涨点)
细节涨点改进篇
【1】YOLOv10改进 | 细节涨点篇 | YOLOv10改进DySample一种轻量的动态上采样算子,轻量又涨点
【2】YOLOv10改进 | 细节涨点改进篇 | YOLOv10引入CARAFE上采样模块 ,改善了传统上采样过程中的细节保留和重建质量
【3】YOLOv10改进 | 细节涨点篇 | YOLOv10引入SRFD 浅层下采样和DRFD深层下采样,提高特征稳健性(在图像分类、目标检测和语义分割等任务上高效涨点)-- 来自TGRS 2023
Neck改进篇
【1】YOLOv10改进 | Neck改进篇 | YOLOv10引入 BiFPN双向特征金字塔网络
【2】 YOLOv10改进 | Neck改进篇 | YOLOv10引入SDI多尺度融合模块助力于小目标检测和图像分割涨点
【3】YOLOv10改进 | Neck篇 | YOLOv10引入ASF-YOLO中的SSFF、TFE和CPAM三个模块用于医学图像分割(助力于小目标检测和分割高效涨点)
【4】YOLOv10改进 | 特征融合改进篇 | YOLOv10引入 CGAFusion高频与低频特征融合模块(全网独家创新)来自TIP 2024顶刊
【5】YOLOv10改进 | 特征融合改进篇 | YOLOv10引入PSFM高频与低频特征融合模块(全网独家创新)
【6】YOLOv10改进 | 特征融合改进篇 | YOLOv10引入CAFMFusion高频与低频特征融合模块(全网独家创新)二次创新模块
【7】YOLOv10改进 | Neck改进篇 | YOLOv10引入DAMO-YOLO中的RepGFPN改进,助力于通用型、轻量级、高效型目标检测
主干网络(backbone)改进篇
【1】YOLOv10改进 | 主干替换篇 | YOLOv10 更换主干Backbone之MobileNetV1(轻量化主干网络结构)
【2】YOLOv10改进 | 主干替换篇 | YOLOv10 更换主干Backbone之MobileNetV2(轻量化主干网络结构--高效轻量移动模型)
【3】YOLOv10改进 | 主干替换篇 | YOLOv10 更换主干Backbone之MobileNetV3(轻量化主干网络结构--在移动分类、检测和分割任务上的表现很好,快拿去跑实验吧)
【4】YOLOv10改进 | 主干替换篇 | YOLOv10 更换主干Backbone之MobileNetV4(轻量化主干网络结构-2024年最新的移动端网络)
【5】YOLOv10改进 | 主干替换篇 | YOLOv10 更换主干PKINet(助力于遥感目标检测任务极限涨点--CVPR 2024)
独家创新改进篇
【2】YOLOv10改进 | 独家创新篇 | YOLOv10利用MogaBlock二次创新C2f减少冗余信息,增强特征表达(在图像分类、目标检测等任务中表现出色)来自ICLR 2024
损失函数改进篇
YOLOv8v10改进 | 超全损失函数改进篇 | SIoU 、WIoU、GIoU、DIoU、EIOU、CIoU, InnerIoU、InnerSIoU、InnerWIoU、FocusIoU等损失函数