YOLOv10通俗易懂!手把手教大家利用yolov10训练自己的数据集(环境搭建,YOLOv10网络结构解读 、yolov10.yaml配置文件详细解读与说明、模型训练参数详细解析)

YOLOv10看这一篇就够了。本文内含YOLOv10网络结构图 + yaml配置文件详细解读与说明 + 训练教程 + 训练参数设置+参数解析说明等一些有关YOLOv10的内容!

YOLOv10专栏订阅链接:YOLOv10 创新改进高效涨点+持续改进300多篇+永久免费答疑

目录

一、YOLOv10前言

1.1 YOLOv10模型整体网络结构图

1.2 环境搭建

1.3数据集获取

 1.4 yolov10项目代码获取

二、yolov10.yaml配置文件进行详细讲解

2.1 参数部分【Parameters】

2.2 主干部分【backbone】 

 2.3 头部【head】

 三、YOLOv10模型训练参数详细解析 

3.1 YOLOv10模型训练代码

3.2 模型大小选择

3.3 训练参数设置

3.4 训练参数说明

四、本文总结


一、YOLOv10前言

论文地址:https://arxiv.org/abs/2405.14458

代码地址:https://github.com/THU-MIG/yolov10

摘要:在过去的几年里,YOLO 已成为实时目标检测领域的主要范式,因为它们在计算成本和检测性能之间取得了有效的平衡。研究人员探索了 YOLO 的架构设计、优化目标、数据增强策略等,取得了显著进展。但是,对非极大值抑制 (NMS) 进行后处理的依赖阻碍了 YOLO 的端到端部署,并对推理延迟产生了不利影响。此外,YOLO 中各种组件的设计缺乏全面彻底的检查,导致明显的计算冗余并限制了模型的能力。它使效率不理想,并且具有相当大的性能改进潜力。在这项工作中,我们的目标是从后处理和模型架构进一步推进 YOLO 的性能-效率边界。为此,我们首先提出了 YOLO 的无 NMS 训练的一致双分配,它同时带来了有竞争力的性能和低推理延迟。此外,我们还引入了 YOLO 的整体效率-精度驱动的模型设计策略。我们从效率和准确率两个角度对 YOLO 的各个组件进行了全面优化,大大降低了计算开销,增强了能力。我们努力的成果是用于实时端到端对象检测的新一代 YOLO 系列,称为 YOLOv10。大量实验表明,YOLOv10 在各种模型规模上实现了最先进的性能和效率。例如,我们的 YOLOv10-S 比 COCO 上同类 AP 下的 RT-DETR-R18 快 1.8×同时参数和 FLOP 数量减少了 2.8×。与 YOLOv9-C 相比,YOLOv10-B 在同等性能下延迟降低了 46%,参数减少了 25%。

1.1 YOLOv10模型整体网络结构图

1.2 环境搭建

conda create -n yolov10 python=3.9
conda activate yolov10

1.3数据集获取

免费获取yolo数据集的网站 :https://universe.roboflow.com/

数据集的目录结构:

修改数据集配置文件data.yaml:

# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: data_name  # dataset root dir 自己数据集的文件夹名称
train: images/train  # train images (relative to 'path') 4 images
val: images/val # val images (relative to 'path') 4 images
test: images/test  # test images (optional)
# number of classes
nc: 1
# Classes
names:
  0: A

 1.4 yolov10项目代码获取

 yolov10项目下载好了,使用pycharm软件打开项目,然后在终端j执行以下命名:

conda activate yolov10 #先激活自己的虚拟环境
pip install -r requirements.txt
pip install ultralytics

二、yolov10.yaml配置文件进行详细讲解

看过我之前那个yolov8详解博客,yolov10与yolov8相似,配置文件主要分为三个部分: 参数部分【Parameters】主干部分【backone】头部部分【head】。下面分别对这几个部分进行详细说明。

关于YOLOv10网络的配置文件yolov10n.yaml的详细内容如下:

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024] 

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 1, PSA, [1024]] # 10

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, C2f, [512]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 3, C2f, [256]] # 16 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P4
  - [-1, 3, C2f, [512]] # 19 (P4/16-medium)

  - [-1, 1, SCDown, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]] # cat head P5
  - [-1, 3, C2fCIB, [1024, True, True]] # 22 (P5/32-large)

  - [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)

2.1 参数部分【Parameters】

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024] 
  • nc: 80 指的是数据集中的类别数量。

  • scales: 代表模型尺寸,分了n,s,m,l,x这5个不同大小的尺寸,参数量依次从小到大。

  • [depth, width, max_channels]:分别表示网络模型的深度因子网络模型的宽度因子最大通道数

  • depth深度因子的作用:表示模型中重复模块的数量或层数的缩放比例。这里主要用来调整C2f模块中的子模块Bottelneck重复次数。比如主干中第一个C2f模块的number系数是3,我们使用0.33x3并且向上取整就等于1了,这就代表第一个C2f模块中Bottelneck只重复一次;

  • width宽度因子的作用:表示模型中通道数(即特征图的深度)的缩放比例,如果某个层原本有64个通道,而width设置为0.5,则该层的通道数变为32。比如使用yolov8n.yaml文件,参数为[0.33, 0.25, 1024]。第一个Conv模块的输出通道数写的是64,但是实际上这个通道数并不是64,而是使用宽度因子 0.25x64得到的最终结果16;同理,C2f模块的输出通道虽然在yaml文件上写的是128,但是在实际使用时依然要乘上宽度因子0.25,那么第一个C2f模块最终的到实际通道数就是0.25x128 = 32。如下图所示,其他的依次类推。

  • max-channels: 表示每层最大通道数。每层的通道数会与这个参数进行一个对比,如果特征图通道数大于这个数,那就取 max_channels的值。

2.2 主干部分【backbone】 

backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 1, PSA, [1024]] # 10

主干部分有四个参数[from, number, module, args] ,解释如下:

  • from:这个参数代表从哪一层获得输入,-1就表示从上一层获得输入,[-1, 6]就表示从上一层和第6层这两层获得输入。第一层比较特殊,这里第一层上一层 没有输入,from默认-1就好了。

  • number:这个参数表示模块重复的次数,如果为3则表示该模块重复3次,这里并不一定是这个模块的重复次数,也有可能是这个模块中的子模块重复的次数。对于C2f模块来说,这个number就代表C2fBottelneck模块重复的次数。

  • module:这个就代表你这层使用的模块的名称,比如你第一层使用了Conv模块,第二层使用了C2f模块。

  • args:表示这个模块需要传入的参数,第一个参数均表示该层的输出通道数。对于第一层conv参数【64,3,2】:64代表输出通道数,3代表卷积核大小k,2代表stride步长。每层输入通道数,默认是上一层的输出通道数。

其他说明:各层注释中的P1/2表示该层特征图缩放为输入图像尺寸的1/2,是第1特征层;P2/4表示该层特征图缩放为输入图像尺寸的1/4,是第2特征层;其他的依次类推。  

 2.3 头部【head

head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, C2f, [512]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 3, C2f, [256]] # 16 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P4
  - [-1, 3, C2f, [512]] # 19 (P4/16-medium)

  - [-1, 1, SCDown, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]] # cat head P5
  - [-1, 3, C2fCIB, [1024, True, True]] # 22 (P5/32-large)

  - [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)

头部分有四个参数[from, number, module, args] ,解释如下:

  • from:这个参数代表从哪一层获得输入,-1就表示从上一层获得输入,[-1, 6]就表示从上一层和第6层这两层获得输入。第一层比较特殊,这里第一层上一层 没有输入,from默认-1就好了。

  • number:这个参数表示模块重复的次数,如果为3则表示该模块重复3次,这里并不一定是这个模块的重复次数,也有可能是这个模块中的子模块重复的次数。对于C2f模块来说,这个number就代表C2fBottelneck模块重复的次数。

  • module:这个就代表你这层使用的模块的名称,比如你第一层使用了Conv模块,第二层使用了C2f模块。

  • args:表示这个模块需要传入的参数,第一个参数均表示该层的输出通道数每层输入通道数,默认是上一层的输出通道数。

这部分主要多出3个操作nn.UpsampleConcatDetect,解释如下:

nn.Upsample:表示上采样,将特征图大小进行翻倍操作。比如将大小为20X20的特征图,变为40X40的特征图大小。

Concat代表拼接操作,将相同大小的特征图,通道进行拼接,要求是特征图大小一致,通道数可以不相同。例如[-1, 6]:-1代表上一层,6代表第六层(从第0层开始数),将上一层与第6层进行concat拼接操作。

v10Detectfrom有三个数: 161822,这三个就是最终网络的输出特征图,分别对应P3P4P5

模型训练时打印出的结构参数如下,下图为yolov10n.yaml打印信息:

 三、YOLOv10模型训练参数详细解析 

关于yolov10的训练参数该如何设置。接下来对yolov10的相关训练参数和使用方法进行了详细说明。希望对大家有所帮助! 

3.1 YOLOv10模型训练代码

YOLOv10模型训练时使用的代码如下:

from ultralytics import YOLOv10
import warnings
warnings.filterwarnings('ignore')
# 模型配置文件
model_yaml_path = r"E:\yolo\yolov10\ultralytics\cfg\models\v10\yolov10n.yaml"
#数据集配置文件
data_yaml_path = r'E:\yolo\yolov10\datasets\data.yaml'
#预训练模型
pre_model_name = 'yolov10n.pt'
if __name__ == '__main__':
    # #加载预训练模型
    # model = YOLOv10(model_yaml_path).load(pre_model_name)
    # 不加载预训练模型
    model = YOLOv10(model_yaml_path)
    #训练模型
    results = model.train(data=data_yaml_path,
                          imgsz=640,
                          epochs=200,
                          batch=4,
                          workers=0,
                          optimizer='SGD',  # using SGD
                          amp=False,  # 如果出现训练损失为Nan可以关闭amp
                          project='runs/V10train',
                          name='exp',
                          )

3.2 模型大小选择

model = YOLOv10("yolov10n.pt") 表示使用的是v10n模型来训练。如果想使用其他大小的模型,只需要把n改为其他大小的对应字母即可。例如: 

model = YOLOv10("yolov10n.pt")
model = YOLOv10("yolov10s.pt")
model = YOLOv10("yolov10m.pt")
model = YOLOv10("yolov10b.pt")
model = YOLOv10("yolov10l.pt")
model = YOLOv10("yolov10x.pt")

不同模型参数大小如下,v10n是参数量最小的模型。一般情况下,模型越大,最终模型的性能效果也会越好。可根据自己实际需求选择相应的模型大小进行训练。

3.3 训练参数设置

通过运行model.train(data="data.yaml", epochs=100, batch=4)训练v8模型,其中(data="data.yaml", epochs=100, batch=4)是训练设置的参数,没有添加的训练参数都是使用的默认值。官方其实给出了很多其他相关参数,详细说明见下文。

如果我们需要自己修改其他训练参数,只需要在train后面的括号中加入相应的参数和具体值即可。

例如加上模型训练优化器参数optimizer,其默认值是auto

可设置的值为:SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto。常用SGD或者AdamW

我们可以直接将其设置为SGD,写法如下:

# 模型训练,添加模型优化器设置
results = model.train(data="data.yaml", epochs=100, batch=4, optimizer='SGD')

3.4 训练参数说明

YOLOv10 模型的训练设置包括训练过程中使用的各种超参数和配置。这些设置会影响模型的性能、速度和准确性。关键的训练设置包括批量大小、学习率、动量和权重衰减。此外,优化器、损失函数和训练数据集组成的选择也会影响训练过程。对这些设置进行仔细的调整和实验对于优化性能至关重要。以下是官方给出了训练可设置参数和说明:

参数默认值说明
modelNone指定用于训练的模型文件。接受指向 .pt 预训练模型或 .yaml 配置文件。对于定义模型结构或初始化权重至关重要。
dataNone数据集配置文件的路径(例如 coco8.yaml).该文件包含特定于数据集的参数,包括训练数据和验证数据的路径、类名和类数。
epochs100训练总轮数。每个epoch代表对整个数据集进行一次完整的训练。调整该值会影响训练时间和模型性能。
timeNone最长训练时间(小时)。如果设置了该值,则会覆盖 epochs 参数,允许训练在指定的持续时间后自动停止。对于时间有限的训练场景非常有用。
patience100在验证指标没有改善的情况下,提前停止训练所需的epoch数。当性能趋于平稳时停止训练,有助于防止过度拟合。
batch16批量大小,有三种模式:设置为整数(例如,' Batch =16 '), 60% GPU内存利用率的自动模式(' Batch =-1 '),或指定利用率分数的自动模式(' Batch =0.70 ')。
imgsz640用于训练的目标图像尺寸。所有图像在输入模型前都会被调整到这一尺寸。影响模型精度和计算复杂度。
saveTrue可保存训练检查点和最终模型权重。这对恢复训练或模型部署非常有用。
save_period-1保存模型检查点的频率,以 epochs 为单位。值为-1 时将禁用此功能。该功能适用于在长时间训练过程中保存临时模型。
cacheFalse在内存中缓存数据集图像 (True/ram)、磁盘 (disk),或禁用它 (False).通过减少磁盘 I/O 提高训练速度,但代价是增加内存使用量。
deviceNone指定用于训练的计算设备:单个 GPU (device=0)、多个 GPU (device=0,1)、CPU (device=cpu),或苹果芯片的 MPS (device=mps).
workers8加载数据的工作线程数(每 RANK 多 GPU 训练)。影响数据预处理和输入模型的速度,尤其适用于多 GPU 设置。
projectNone保存训练结果的项目目录名称。允许有组织地存储不同的实验。
nameNone训练运行的名称。用于在项目文件夹内创建一个子目录,用于存储训练日志和输出结果。
exist_okFalse如果为 True,则允许覆盖现有的项目/名称目录。这对迭代实验非常有用,无需手动清除之前的输出。
pretrainedTrue决定是否从预处理模型开始训练。可以是布尔值,也可以是加载权重的特定模型的字符串路径。提高训练效率和模型性能。
optimizer'auto'为训练模型选择优化器。选项包括 SGDAdamAdamWNAdamRAdamRMSProp 等,或 auto 用于根据模型配置进行自动选择。影响收敛速度和稳定性
verboseFalse在训练过程中启用冗长输出,提供详细日志和进度更新。有助于调试和密切监控培训过程。
seed0为训练设置随机种子,确保在相同配置下运行的结果具有可重复性。
deterministicTrue强制使用确定性算法,确保可重复性,但由于对非确定性算法的限制,可能会影响性能和速度。
single_clsFalse在训练过程中将多类数据集中的所有类别视为单一类别。适用于二元分类任务,或侧重于对象的存在而非分类。
rectFalse可进行矩形训练,优化批次组成以减少填充。这可以提高效率和速度,但可能会影响模型的准确性。
cos_lrFalse利用余弦学习率调度器,根据历时的余弦曲线调整学习率。这有助于管理学习率,实现更好的收敛。
close_mosaic10在训练完成前禁用最后 N 个epoch的马赛克数据增强以稳定训练。设置为 0 则禁用此功能。
resumeFalse从上次保存的检查点恢复训练。自动加载模型权重、优化器状态和历时计数,无缝继续训练。
ampTrue启用自动混合精度 (AMP) 训练,可减少内存使用量并加快训练速度,同时将对精度的影响降至最低。
fraction1.0指定用于训练的数据集的部分。允许在完整数据集的子集上进行训练,这对实验或资源有限的情况非常有用。
profileFalse在训练过程中,可对ONNX 和TensorRT 速度进行剖析,有助于优化模型部署。
freezeNone冻结模型的前 N 层或按索引指定的层,从而减少可训练参数的数量。这对微调或迁移学习非常有用。
lr00.01初始学习率(即 SGD=1E-2Adam=1E-3) .调整这个值对优化过程至关重要,会影响模型权重的更新速度。
lrf0.01最终学习率占初始学习率的百分比 = (lr0 * lrf),与调度程序结合使用,随着时间的推移调整学习率。
momentum0.937用于 SGD 的动量因子,或用于 Adam 优化器的 beta1,用于将过去的梯度纳入当前更新。
weight_decay0.0005L2 正则化项,对大权重进行惩罚,以防止过度拟合。
warmup_epochs3.0学习率预热的历元数,学习率从低值逐渐增加到初始学习率,以在早期稳定训练。
warmup_momentum0.8热身阶段的初始动力,在热身期间逐渐调整到设定动力。
warmup_bias_lr0.1热身阶段的偏置参数学习率,有助于稳定初始历元的模型训练。
box7.5损失函数中边框损失部分的权重,影响对准确预测边框坐标的重视程度。
cls0.5分类损失在总损失函数中的权重,影响正确分类预测相对于其他部分的重要性。
dfl1.5分布焦点损失权重,在某些YOLO 版本中用于精细分类。
pose12.0姿态损失在姿态估计模型中的权重,影响着准确预测姿态关键点的重点。
kobj2.0姿态估计模型中关键点对象性损失的权重,平衡检测可信度与姿态精度。
label_smoothing0.0应用标签平滑,将硬标签软化为目标标签和标签均匀分布的混合标签,可以提高泛化效果。
nbs64用于损耗正常化的标称批量大小。
overlap_maskTrue决定在训练过程中分割掩码是否应该重叠,适用于实例分割任务。
mask_ratio4分割掩码的下采样率,影响训练时使用的掩码分辨率。
dropout0.0分类任务中正则化的丢弃率,通过在训练过程中随机省略单元来防止过拟合。
valTrue可在训练过程中进行验证,以便在单独的数据集上对模型性能进行定期评估。
plotsFalse生成并保存训练和验证指标图以及预测示例图,以便直观地了解模型性能和学习进度。

常用的几个训练参数是: 数据集配置文件data训练轮数epochs训练批次大小batch训练使用的设备device,模型优化器optimizer初始学习率lr0

以上便是关于YOLOv10模型详细说明,看到这里的小伙伴,相信你一定对yolov10模型有了一定的认识啦。

四、本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv10改进有效涨点专栏,本专栏后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,本专栏会持续更新300+创新改进点,目前限时特价99.9,仅限前66名,之后恢复原价!!!大家尽早关注有效涨点专栏,带着大家快速高效发论文!如果大家觉得本文能帮助到你了,订阅本专栏,关注后续更多的更新~ 

YOLOv10有效改进专栏订阅跳转连接

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值