YOLOv13涨点改进 | 全网首发Conv独家改进篇 | CVPR 2025 | 引入GCConv卷积改进YOLOv13,含GCC3k2二次创新,能够捕捉更加丰富和复杂的特征信息

一、本文介绍

🔥本文介绍GCConv模块在YOLOv13目标检测模型中的应用,能够提升其在实时目标检测任务中的表现。它通过多路径结构增强特征学习能力,特别适合复杂场景和多尺度目标的检测。同时,GCConv在推理阶段通过重参数化为单一卷积,提升了推理速度,使得YOLOv13在需要高精度和低延迟的实时检测任务中表现出色。因此特别适合在资源有限的设备上进行快速训练和推理,如智能监控、自动驾驶、工业检测等需要实时反应的应用场景。

专栏改进目录:YOLOv13改进包含各种卷积、主干网络、各种注意力机制、检测头、损失函数、Neck改进、小目标检测、二次创新模块、HyperACE二次创新、独家创新等几百种创新点改进。

全新YOLOv13创新—发论文改进专栏链接:全新YOLOv13创新改进高效涨点+永久更新中(至少500+改进)+高效跑实验发论文

本文目录

一、本文介绍

二、GCConv模块介绍

2.1 GCConv模块网络结构图

2.2 GCConv模块的作用

2.3 GCConv模块的优势

三、完整核心代码

 四、手把手教你配置模块和修改task.py文件

1.首先在ultralytics/nn/newsAddmodules创建一个.py文件

2.在ultralytics/nn/newsAddmodules/__init__.py中引用

3.修改task.py文件

五、创建涨点yaml配置文件

🚀 创新改进1 : yolov13n_GCConv.yaml

🚀 创新改进2 : yolov13n_GCC3k2.yaml

六、正常运行

 

二、GCConv模块介绍

摘要:最近的实时语义分割模型,无论是单分支还是多分支,性能和速度都很好。然而,它们的速度受到多路径块的限制,一些则依赖于高性能的教师模型进行训练。为了克服这些问题,我们提出了金锤网络(GCNet)。具体来说,GCNet使用垂直多卷积和水平多路径进行训练,这些在推理时重新参数化为单个卷积,从而优化性能和速度。这个设计允许GCNet在训练期间自我扩展,在推理时自我收缩,有效地成为一个“教师模型”,而无需外部模型。实验结果表明,GCNet在Cityscapes、CamVid和Pascal VOC 2012数据集上在性能和速度方面优于现有的最先进模型。

2.1 GCConv模块网络结构图

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值