一、本文介绍
🔥本文介绍GCConv模块在YOLOv13目标检测模型中的应用,能够提升其在实时目标检测任务中的表现。它通过多路径结构增强特征学习能力,特别适合复杂场景和多尺度目标的检测。同时,GCConv在推理阶段通过重参数化为单一卷积,提升了推理速度,使得YOLOv13在需要高精度和低延迟的实时检测任务中表现出色。因此特别适合在资源有限的设备上进行快速训练和推理,如智能监控、自动驾驶、工业检测等需要实时反应的应用场景。
专栏改进目录:YOLOv13改进包含各种卷积、主干网络、各种注意力机制、检测头、损失函数、Neck改进、小目标检测、二次创新模块、HyperACE二次创新、独家创新等几百种创新点改进。
全新YOLOv13创新—发论文改进专栏链接:全新YOLOv13创新改进高效涨点+永久更新中(至少500+改进)+高效跑实验发论文
本文目录
1.首先在ultralytics/nn/newsAddmodules创建一个.py文件
2.在ultralytics/nn/newsAddmodules/__init__.py中引用
🚀 创新改进1 : yolov13n_GCConv.yaml
🚀 创新改进2 : yolov13n_GCC3k2.yaml
二、GCConv模块介绍

摘要:最近的实时语义分割模型,无论是单分支还是多分支,性能和速度都很好。然而,它们的速度受到多路径块的限制,一些则依赖于高性能的教师模型进行训练。为了克服这些问题,我们提出了金锤网络(GCNet)。具体来说,GCNet使用垂直多卷积和水平多路径进行训练,这些在推理时重新参数化为单个卷积,从而优化性能和速度。这个设计允许GCNet在训练期间自我扩展,在推理时自我收缩,有效地成为一个“教师模型”,而无需外部模型。实验结果表明,GCNet在Cityscapes、CamVid和Pascal VOC 2012数据集上在性能和速度方面优于现有的最先进模型。
订阅专栏 解锁全文
1723

被折叠的 条评论
为什么被折叠?



