YOLOv11改进 - 卷积Conv | GCNet之金箍棒块GCBlock( CVPR 2025): 重参数化捕获全局依赖

部署运行你感兴趣的模型镜像

前言

本文介绍了GCBlock在YOLOv11中的结合应用。GCBlock是GCNet的核心组件,能高效捕获特征图中的全局依赖关系,融合了非局部网络和挤压 - 激励网络的优势,降低计算成本并保障模型性能。其遵循“上下文建模 - 特征变换 - 特征融合”框架,通过全局平均池化、全连接层等操作生成注意力权重。我们将GCBlock集成进YOLOv11,替代原有的部分卷积模块,实现更高效的全局上下文建模。实验证明,YOLOv11-GCBlock在目标检测任务中表现出色,展现了GCBlock在深度学习中的广泛应用前景。

文章目录: YOLOv11改进大全:卷积层、轻量化、注意力机制、损失函数、Backbone、SPPF、Neck、检测头全方位优化汇总

专栏链接: YOLOv11改进专栏

介绍

image-20251119230707964

摘要

近年来的实时语义分割模型,无论是单分支还是多分支结构,都在性能和速度上取得了不错的表现。然而,这些模型的速度常常受到多路径模块的限制,有些还依赖于高性能的教师模型进行训练。为了解决这些问题,我们提出了 金箍棒网络(GCNet)

具体来说,GCNet 在训练阶段结合了 纵向多卷积横向多路径结构,在推理阶段则将这些结构重新参数化为一个单一的卷积操作,从而同时优化性能与速度。这样的设计使得 GCNet 能够在训练时“自我膨胀”,而在推理时“自我收缩”,相当于无需外部教师模型就具备了“教师模型”的能力。

实验结果表明,GCNet 在 Cityscapes、CamVid 和 Pascal VOC 2012 数据集上,在性能和推理速度方面都优于现有的先进模型。

项目代码已开源,地址为:https://github.com/gyyang23/GCNet

文章链接

论文地址:论文地址

代码地址:

您可能感兴趣的与本文相关的镜像

Yolo-v5

Yolo-v5

Yolo

YOLO(You Only Look Once)是一种流行的物体检测和图像分割模型,由华盛顿大学的Joseph Redmon 和Ali Farhadi 开发。 YOLO 于2015 年推出,因其高速和高精度而广受欢迎

### 优化 GCNet 模型的性能与结构改进方法 GCNet 是一种结合了非局部注意力机制和 SE Block 的全局上下文建模模,其核心思想是通过动态调整注意力权重来增强网络对关键信息的关注。为了进一步提升 GCNet 的性能和结构效率,可以从以下几个方面进行优化和改进--- #### 1. **轻量化设计** 在保持性能的同时降低模型复杂度是提高推理效率的关键。 - **通道压缩与降维**:在 GC 中引入更高效的通道压缩策略,例如使用深度可分离卷积或线性瓶颈结构减少计算量。 - **简化注意力机制**:可以借鉴 SENet 或 ECA-Net 的轻量级通道注意力机制,在保证全局建模能力的前提下降低参数量[^4]。 ```python # 示例:ECA 注意力机制简化实现 class ECAAttention(nn.Module): def __init__(self, kernel_size=3): super().__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.conv = nn.Conv1d(1, 1, kernel_size=kernel_size, padding=(kernel_size - 1) // 2, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): y = self.avg_pool(x) y = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1) return x * self.sigmoid(y) ``` --- #### 2. **多尺度融合与上下文建模** 增强模型对多尺度特征的感知能力,有助于提升检测、分割等任务的精度。 - **多尺度 GC 模集成**:在不同层级(如 c3、c4、c5)中分别引入具有不同感受野的 GC 模,以捕捉多层次语义信息。 - **结合非局部操作与空洞卷积**:将 GCNet 中的注意力机制与空洞卷积相结合,扩大有效感受野而不增加下采样次数[^2]。 --- #### 3. **结构重排与模化重构** 通过重新设计模结构提升训练稳定性与泛化能力。 - **采用 Bottleneck 结构优化 GC 模**:将 GC 模嵌入 ResNet 的 Bottleneck 中,并调整其插入位置(如 stage3-stage5),可显著提升性能[^4]。 - **引入残差连接与归一化层**:确保 GC 模内部具备良好的梯度流动,推荐使用 LayerNorm 或 BatchNorm 配合残差连接[^1]。 ```python # 示例:带残差连接的 GC 模 class ResidualGCBlock(nn.Module): def __init__(self, in_channels): super().__init__() self.gc = GlobalContextBlock(in_channels) self.norm = nn.BatchNorm2d(in_channels) self.relu = nn.ReLU(inplace=True) def forward(self, x): residual = x x = self.gc(x) x += residual x = self.norm(x) return self.relu(x) ``` --- #### 4. **训练策略优化** 合理的训练策略可以显著提升最终性能。 - **学习率调度与数据增强**:使用 Cosine Annealing 或 StepLR 调整学习率,并结合 CutMix、Mosaic 等高级数据增强技术提升泛化能力。 - **知识蒸馏**:使用更大模型(如 ResNeXt-101)作为教师模型,指导小模型训练,从而提升其性能而无需增加推理开销[^2]。 --- #### 5. **结合可变形卷积与级联策略** 针对目标检测等任务,可以通过以下方式增强特征提取能力: - **添加可变形卷积**:在 GCNet 的骨干网络中引入 DCN(Deformable Convolution Network),使其适应目标形状变化。 - **级联检测头设计**:采用 Cascade R-CNN 思路,在多个阶段逐步优化检测结果,提升 AP 指标[^2]。 --- #### 6. **部署优化与硬件加速** 为实际部署场景考虑,还需对模型进行工程层面的优化。 - **量化与剪枝**:对训练完成的 GCNet 模型进行通道剪枝或权重量化,减小模型体积并提升推理速度。 - **ONNX 导出与推理引擎适配**:将模型导出为 ONNX 格式,并使用 TensorRT、OpenVINO 等推理引擎进行加速部署。 --- ###
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

魔改工程师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值