前言
本文介绍了GCBlock在YOLOv11中的结合应用。GCBlock是GCNet的核心组件,能高效捕获特征图中的全局依赖关系,融合了非局部网络和挤压 - 激励网络的优势,降低计算成本并保障模型性能。其遵循“上下文建模 - 特征变换 - 特征融合”框架,通过全局平均池化、全连接层等操作生成注意力权重。我们将GCBlock集成进YOLOv11,替代原有的部分卷积模块,实现更高效的全局上下文建模。实验证明,YOLOv11-GCBlock在目标检测任务中表现出色,展现了GCBlock在深度学习中的广泛应用前景。
文章目录: YOLOv11改进大全:卷积层、轻量化、注意力机制、损失函数、Backbone、SPPF、Neck、检测头全方位优化汇总
专栏链接: YOLOv11改进专栏
介绍

摘要
近年来的实时语义分割模型,无论是单分支还是多分支结构,都在性能和速度上取得了不错的表现。然而,这些模型的速度常常受到多路径模块的限制,有些还依赖于高性能的教师模型进行训练。为了解决这些问题,我们提出了 金箍棒网络(GCNet)。
具体来说,GCNet 在训练阶段结合了 纵向多卷积 和 横向多路径结构,在推理阶段则将这些结构重新参数化为一个单一的卷积操作,从而同时优化性能与速度。这样的设计使得 GCNet 能够在训练时“自我膨胀”,而在推理时“自我收缩”,相当于无需外部教师模型就具备了“教师模型”的能力。
实验结果表明,GCNet 在 Cityscapes、CamVid 和 Pascal VOC 2012 数据集上,在性能和推理速度方面都优于现有的先进模型。
项目代码已开源,地址为:https://github.com/gyyang23/GCNet
文章链接
论文地址:论文地址
代码地址:
订阅专栏 解锁全文
957

被折叠的 条评论
为什么被折叠?



