和式


  这周终于啃完了和式的内容,对和式大体有了认知了。说实话看这块的内容挺有挫败感的,对于这一类问题的处理完全依赖于高中对于数列的相关内容上,其实高中数列方面的知识也没那么水,但直接一个方法一个方法的学习,学会的只是一个对某一固定形式的题目处理方法,而真正解决问题的方法思想不会去考虑。所以自以为会了,其实只是很熟练的解决那一类问题了,所以忘起来很容易。
  在我看来,学习一个知识,大约有四个阶段:接受了,明白了,掌握了,会了。对于高数等学科,即使考研题目,也只要求掌握了就好,核心思想能够理解即可。但ACM要求可能不只是掌握了就好,对于比赛的题目,可不见得就能对应某种已有的类型或方法。对于第一章的递归,我自认为可以达到掌握程度了,遇到类似的问题或者部分新的问题能够自己分析并寻找解决方案,但和式部分,自认为也就是明白了。对于书中提及的问题,自己去寻求方法(简单问题根据已有的知识可以解决,复杂的就麻烦了),但往往看到书中的方法还是得惊叹“还能这样”。往往书中的方法一开始会有些不理解,看起来并不像是直接指向结果进行的处理,但慢慢的处理后就能解决问题了,这样的看待问题的角度是我想不到的。所以只能从头沿着他的思路看待,能够接受给出的说法,继而思考给定方法成立的原因或者原理,就可以明白为什么这么做。如此,照猫画虎自然可以做到,但给出一个类似但差别较大的问题,我不见得能够想到用这种方法了,因为我并没有抓住作者对于问题分析的角度,而这个角度问题并不是用几句话可以描述的,那需要自己去体会。这就是我对于这一章的学习不太满意的方面,因此自我感到很挫败。
  但不能在这里耗住了,而且一直耗着不见得有什么用,所以不如继续往下进行,在之后的问题中慢慢体会,不懂的时候回来看看,或许回过头来或许能有不同的看法。
  再对这一部分总结一下,对于内容没太多自己的看法,所以就只大体表达一下自己的看法吧。
  对和式与递归的相互转换处理,这块还是很容易接受的,当然,其中提出新的处理方法也还是值得注意的。
  对和式的处理分配律,结合律和交换律。前两者很容易理解,特殊就在交换律,在这里就是一种新定义的交换律了,在这里我觉得对于这一定律的应用太随意了,这一定律应用时应该需要一定的前提条件的(或者说取值范围有一定的限定),而这里没有明显提出,所以我稍微自己标注了一下。当然,也是在这里首次提出的扰动法(这个我觉得挺好用,推理及处理过程符合我的习惯)。
  多重和式,看到多重和式的定义时就很容易想到二维数组或者矩阵了,但慢慢的处理方法又变得复杂了,很不容易明白这些不太熟悉的东西,但我实在想象不到如何让它回到数组中该怎样解决问题。
  处理和式的一般方法。归纳法已经是老套路了,很多时候就会去这样猜测,然后去验证正确性。但确实,猜测具有盲目性,不见得益大于弊还是弊大于益。扰动法,很符合我个人习惯,或者很符合以前数学学习的某些习惯或方法。成套方法,类似待定系数,这个反而我用不太好,不习惯。用积分代替和式处理,让人怀念高等数学了。展开和收缩,这一方法其实在以前的学习很多地出现过,但面对一个本来就复杂的问题,通常没有勇气这样做,因为不能预见会得到简化问题的关键一步,或者说很可能白费力气。再其后的积分法等,慢慢来相可以攻克,但我想还是留待寒假解决吧,那时候时间更多点。
  如此,回头看下,对自己并没那么满意,连大体上掌握了都不敢说。不过话说回来,在解决问题时,很多时候得到一个递归式或者和式其实问题就已经解决了,毕竟我们是用计算机解决问题而不是人力演算。但并不是说这些就没用了,其实研究数学本来就会去找寻很多看似没用的东西,这些看似没用的东西多了,不知什么时候就发现有用了。所以 ,不知道为什么,我现在也喜欢上证明了,对于一个结论,别人或许不去考虑它为什么或者能干什么,而我却很愿意做这些别人看起来没意义的事,算是对思维的锻炼,又或者是因为我学数学学多了,已经向着“掉头发”的境界靠拢了。
  所以,和式就这样告一段落吧,虽然不尽人意。题目只是看了几个较简单的,相信还会回过头来弥补的(不会才得回来补嘛)。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值