傅里叶光学-函数简介

常用非初等函数:

普通函数

矩形函数

一维矩形函数,门函数
r e c t ( x a ) = { 1 , x ⩽ ∣ a 2 ∣ 0 , 其 他 rect\left(\frac{x}{a}\right) = \left\{\begin{array}{c} 1, & x \leqslant\left|\frac{a}{2}\right|\\[2mm] 0, & 其他 \end{array}\right. rect(ax)={1,0,x2a
二维矩形函数,矩孔透过率
r e c t ( x a , y b ) = r e c t ( x a ) r e c t ( y b ) = { 1 , x ⩽ ∣ a 2 ∣ , y ⩽ ∣ b 2 ∣ 0 , 其 他 rect\left(\frac{x}{a},\frac{y}{b}\right) = rect\left(\frac{x}{a}\right)rect\left(\frac{y}{b}\right) = \left\{\begin{array}{c} 1, & x \leqslant \left|\frac{a}{2}\right|,y \leqslant \left|\frac{b}{2}\right|\\[2mm] 0, & 其他 \end{array}\right. rect(ax,by)=rect(ax)rect(by)={1,0,x2a,y2b

s i n c sinc sinc函数

s i n c ( x a ) = sin ⁡ π x a π x a sinc\left(\frac{x}{a}\right) = \frac{\sin\frac{\pi x}{a}}{\frac{\pi x}{a}} sinc(ax)=aπxsinaπx

三角形函数

一维三角形函数
Λ ( x a ) = { 1 − ∣ x a ∣ , ∣ x ∣ ⩽ a 0 , 其 他 \Lambda\left(\frac{x}{a}\right) = \left\{\begin{array}{c} 1-\left|\frac{x}{a}\right|, & \left|x\right| \leqslant a\\[2mm] 0, & 其他 \end{array}\right. Λ(ax)={1ax,0,xa
二维三角形函数
Λ ( x a , y b ) = Λ ( x a ) Λ ( y b ) \Lambda\left(\frac{x}{a},\frac{y}{b}\right) = \Lambda\left(\frac{x}{a}\right)\Lambda\left(\frac{y}{b}\right) Λ(ax,by)=Λ(ax)Λ(by)

阶跃函数

s t e p ( x ) = { 1 , x > 0 1 2 , x = 0 0 , x < 0 step\left(x\right) = \left\{\begin{array}{c} 1,&x>0\\\frac{1}{2},&x=0\\0,&x<0 \end{array}\right. step(x)=1,21,0,x>0x=0x<0

符号函数

s g n ( x ) = { 1 , x > 0 0 , x = 0 − 1 , x < 0 sgn(x) = \left\{ {\begin{array}{c} {1,}&{x > 0}\\ {0,}&{x = 0}\\ { - 1,}&{x < 0} \end{array}} \right. sgn(x)=1,0,1,x>0x=0x<0

圆域函数,圆孔透过率

c i r c ( x 2 + y 2 r 0 ) = { 1 , x 2 + y 2 < r 0 0 , 其 他 c i r c ( r r 0 ) = { 1 , r < r 0 0 , r > r 0 \begin{array}{c} circ\left(\cfrac{\sqrt{x^2+y^2}}{r_0}\right) = \left\{\begin{array}{c} 1, & \sqrt{x^2+y^2}<r_0\\ 0, & 其他 \end{array}\right.\\[4mm] circ\left(\frac{r}{r_0}\right) = \left\{\begin{array}{c} 1, & r<r_0\\ 0, & r>r_0 \end{array}\right. \end{array} circ(r0x2+y2 )={1,0,x2+y2 <r0circ(r0r)={1,0,r<r0r>r0

高斯函数

g a u s s ( x a ) = exp ⁡ [ − π ( x a ) 2 ] gauss\left(\frac{x}{a}\right) = \exp\left[-\pi \left(\frac{x}{a}\right)^2\right] gauss(ax)=exp[π(ax)2]

r e c t rect rect t r i tri tri s i n c sinc sinc s i n c 2 sinc^2 sinc2 g a u s s gauss gauss函数的定义中,中心的纵坐标为1,积分为 a a a

广义函数

δ \delta δ函数

δ ( x , y ) = { 0 , x ≠ 0 , y ≠ 0 ∞ , x = 0 , y = 0 ∬ − ∞ ∞ δ ( x , y ) d x d y = 1 \begin{array}{c} \delta\left(x,y\right) = \left\{\begin{array}{c} 0, & x\ne 0,y\ne 0\\ \infty, & x=0,y=0 \end{array}\right.\\[3mm] \iint\limits^\infty_{-\infty} \delta\left(x,y\right) dxdy = 1 \end{array} δ(x,y)={0,,x=0,y=0x=0,y=0δ(x,y)dxdy=1
对于任意一个检验函数 ϕ ( x , y ) \phi\left(x,y\right) ϕ(x,y),在 x = y = 0 x=y=0 x=y=0处连续,如果存在函数 f ( x , y ) f\left(x,y\right) f(x,y)总满足:
∬ − ∞ ∞ f ( x , y ) ϕ ( x , y ) d x d y = ϕ ( 0 , 0 ) \iint\limits^\infty_{-\infty} f\left(x,y\right)\phi\left(x,y\right)dxdy = \phi\left(0,0\right) f(x,y)ϕ(x,y)dxdy=ϕ(0,0)
那么这个函数为 δ \delta δ函数。

δ \delta δ函数的性质
  • 筛选性质
    ∬ − ∞ ∞ f ( x , y ) δ ( x − x 0 , y − y 0 ) d x d y = f ( x 0 , y 0 ) \iint\limits^\infty_{-\infty} f\left(x,y\right)\delta\left(x-x_0,y-y_0\right)dxdy = f\left(x_0,y_0\right) f(x,y)δ(xx0,yy0)dxdy=f(x0,y0)

  • 坐标缩放
    δ ( a x , b y ) = 1 ∣ a b ∣ δ ( x , y ) \delta\left(ax,by\right) = \frac{1}{\left|ab\right|}\delta\left(x,y\right) δ(ax,by)=ab1δ(x,y)

  • 可分离变量
    δ ( x , y ) = δ ( x ) δ ( y ) \delta\left(x,y\right) = \delta\left(x\right)\delta\left(y\right) δ(x,y)=δ(x)δ(y)

  • 乘积性质
    f ( x , y ) δ ( x − x 0 , y − y 0 ) = f ( x 0 , y 0 ) δ ( x − x 0 , y − y 0 ) f\left(x,y\right)\delta\left(x-x_0,y-y_0\right) = f\left(x_0,y_0\right)\delta\left(x-x_0,y-y_0\right) f(x,y)δ(xx0,yy0)=f(x0,y0)δ(xx0,yy0)

  • 奇偶性
    δ ( x , y ) = δ ( − x , y ) = δ ( x , − y ) = δ ( − x , − y ) δ ′ ( x , y ) = − δ ′ ( − x , − y ) \begin{array}{c} \delta\left(x,y\right) = \delta\left(-x,y\right) = \delta\left(x,-y\right) = \delta\left(-x,-y\right)\\[2mm] \delta'\left(x,y\right) = -\delta'\left(-x,-y\right) \end{array} δ(x,y)=δ(x,y)=δ(x,y)=δ(x,y)δ(x,y)=δ(x,y)

  • 导数性质
    ∫ − ∞ ∞ f ( x ) δ ′ ( x − x 0 ) = − f ′ ( x 0 ) \int^\infty_{-\infty}f\left(x\right)\delta'\left(x-x_0\right) = -f'\left(x_0\right) f(x)δ(xx0)=f(x0)

  • 功率性质
    x n δ ( n ) ( x ) = ( − 1 ) n n ! δ ( x ) x^n\delta^{\left(n\right)}\left(x\right) = \left(-1\right)^nn!\delta\left(x\right) xnδ(n)(x)=(1)nn!δ(x)

梳妆函数

一维梳妆函数是间隔为1的 δ \delta δ函数的无穷序列
c o m b ( x ) = ∑ n = − ∞ ∞ δ ( x − n ) comb\left(x\right) = \sum\limits_{n=-\infty}^\infty\delta\left(x-n\right) comb(x)=n=δ(xn)
周期为 Δ \Delta Δ时,
1 Δ c o m b ( x Δ ) = ∑ − ∞ ∞ δ ( x − n Δ ) \frac{1}{\Delta}comb\left(\frac{x}{\Delta}\right) = \sum^\infty_{-\infty}\delta\left(x-n\Delta\right) Δ1comb(Δx)=δ(xnΔ)
二维梳妆函数
c o m b ( x , y ) = c o m b ( x ) c o m b ( y ) comb\left(x,y\right) = comb\left(x\right)comb\left(y\right) comb(x,y)=comb(x)comb(y)

梳妆函数的用途
  • 抽样,把连续函数变成离散函数
    f ( x ) c o m b ( x ) = ∑ n = − ∞ ∞ f ( n ) δ ( x − n ) f ( x , y ) c o m b ( x , y ) = ∑ n = − ∞ ∞ ∑ m = − ∞ ∞ f ( n , m ) δ ( x − n , y − m ) \begin{array}{c} f\left(x\right)comb\left(x\right) = \sum\limits_{n=-\infty}^\infty f\left(n\right)\delta\left(x-n\right)\\[2mm] f\left(x,y\right)comb\left(x,y\right) = \sum\limits_{n=-\infty}^\infty\sum\limits_{m=-\infty}^\infty f\left(n,m\right)\delta\left(x-n,y-m\right)\\[3mm] \end{array} f(x)comb(x)=n=f(n)δ(xn)f(x,y)comb(x,y)=n=m=f(n,m)δ(xn,ym)

  • 重复排列
    f ( x ) ∗ c o m b ( x ) = ∑ n = − ∞ ∞ f ( x − n ) f\left(x\right)*comb\left(x\right) = \sum\limits_{n=-\infty}^\infty f\left(x-n\right) f(x)comb(x)=n=f(xn)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值