文章目录
常用非初等函数:
普通函数
矩形函数
一维矩形函数,门函数
r
e
c
t
(
x
a
)
=
{
1
,
x
⩽
∣
a
2
∣
0
,
其
他
rect\left(\frac{x}{a}\right) = \left\{\begin{array}{c} 1, & x \leqslant\left|\frac{a}{2}\right|\\[2mm] 0, & 其他 \end{array}\right.
rect(ax)={1,0,x⩽∣∣2a∣∣其他
二维矩形函数,矩孔透过率
r
e
c
t
(
x
a
,
y
b
)
=
r
e
c
t
(
x
a
)
r
e
c
t
(
y
b
)
=
{
1
,
x
⩽
∣
a
2
∣
,
y
⩽
∣
b
2
∣
0
,
其
他
rect\left(\frac{x}{a},\frac{y}{b}\right) = rect\left(\frac{x}{a}\right)rect\left(\frac{y}{b}\right) = \left\{\begin{array}{c} 1, & x \leqslant \left|\frac{a}{2}\right|,y \leqslant \left|\frac{b}{2}\right|\\[2mm] 0, & 其他 \end{array}\right.
rect(ax,by)=rect(ax)rect(by)={1,0,x⩽∣∣2a∣∣,y⩽∣∣2b∣∣其他
s i n c sinc sinc函数
s i n c ( x a ) = sin π x a π x a sinc\left(\frac{x}{a}\right) = \frac{\sin\frac{\pi x}{a}}{\frac{\pi x}{a}} sinc(ax)=aπxsinaπx
三角形函数
一维三角形函数
Λ
(
x
a
)
=
{
1
−
∣
x
a
∣
,
∣
x
∣
⩽
a
0
,
其
他
\Lambda\left(\frac{x}{a}\right) = \left\{\begin{array}{c} 1-\left|\frac{x}{a}\right|, & \left|x\right| \leqslant a\\[2mm] 0, & 其他 \end{array}\right.
Λ(ax)={1−∣∣ax∣∣,0,∣x∣⩽a其他
二维三角形函数
Λ
(
x
a
,
y
b
)
=
Λ
(
x
a
)
Λ
(
y
b
)
\Lambda\left(\frac{x}{a},\frac{y}{b}\right) = \Lambda\left(\frac{x}{a}\right)\Lambda\left(\frac{y}{b}\right)
Λ(ax,by)=Λ(ax)Λ(by)
阶跃函数
s t e p ( x ) = { 1 , x > 0 1 2 , x = 0 0 , x < 0 step\left(x\right) = \left\{\begin{array}{c} 1,&x>0\\\frac{1}{2},&x=0\\0,&x<0 \end{array}\right. step(x)=⎩⎨⎧1,21,0,x>0x=0x<0
符号函数
s g n ( x ) = { 1 , x > 0 0 , x = 0 − 1 , x < 0 sgn(x) = \left\{ {\begin{array}{c} {1,}&{x > 0}\\ {0,}&{x = 0}\\ { - 1,}&{x < 0} \end{array}} \right. sgn(x)=⎩⎨⎧1,0,−1,x>0x=0x<0
圆域函数,圆孔透过率
c i r c ( x 2 + y 2 r 0 ) = { 1 , x 2 + y 2 < r 0 0 , 其 他 c i r c ( r r 0 ) = { 1 , r < r 0 0 , r > r 0 \begin{array}{c} circ\left(\cfrac{\sqrt{x^2+y^2}}{r_0}\right) = \left\{\begin{array}{c} 1, & \sqrt{x^2+y^2}<r_0\\ 0, & 其他 \end{array}\right.\\[4mm] circ\left(\frac{r}{r_0}\right) = \left\{\begin{array}{c} 1, & r<r_0\\ 0, & r>r_0 \end{array}\right. \end{array} circ(r0x2+y2)={1,0,x2+y2<r0其他circ(r0r)={1,0,r<r0r>r0
高斯函数
g a u s s ( x a ) = exp [ − π ( x a ) 2 ] gauss\left(\frac{x}{a}\right) = \exp\left[-\pi \left(\frac{x}{a}\right)^2\right] gauss(ax)=exp[−π(ax)2]
r e c t rect rect, t r i tri tri, s i n c sinc sinc, s i n c 2 sinc^2 sinc2, g a u s s gauss gauss函数的定义中,中心的纵坐标为1,积分为 a a a。
广义函数
δ \delta δ函数
δ
(
x
,
y
)
=
{
0
,
x
≠
0
,
y
≠
0
∞
,
x
=
0
,
y
=
0
∬
−
∞
∞
δ
(
x
,
y
)
d
x
d
y
=
1
\begin{array}{c} \delta\left(x,y\right) = \left\{\begin{array}{c} 0, & x\ne 0,y\ne 0\\ \infty, & x=0,y=0 \end{array}\right.\\[3mm] \iint\limits^\infty_{-\infty} \delta\left(x,y\right) dxdy = 1 \end{array}
δ(x,y)={0,∞,x=0,y=0x=0,y=0−∞∬∞δ(x,y)dxdy=1
对于任意一个检验函数
ϕ
(
x
,
y
)
\phi\left(x,y\right)
ϕ(x,y),在
x
=
y
=
0
x=y=0
x=y=0处连续,如果存在函数
f
(
x
,
y
)
f\left(x,y\right)
f(x,y)总满足:
∬
−
∞
∞
f
(
x
,
y
)
ϕ
(
x
,
y
)
d
x
d
y
=
ϕ
(
0
,
0
)
\iint\limits^\infty_{-\infty} f\left(x,y\right)\phi\left(x,y\right)dxdy = \phi\left(0,0\right)
−∞∬∞f(x,y)ϕ(x,y)dxdy=ϕ(0,0)
那么这个函数为
δ
\delta
δ函数。
δ \delta δ函数的性质
-
筛选性质
∬ − ∞ ∞ f ( x , y ) δ ( x − x 0 , y − y 0 ) d x d y = f ( x 0 , y 0 ) \iint\limits^\infty_{-\infty} f\left(x,y\right)\delta\left(x-x_0,y-y_0\right)dxdy = f\left(x_0,y_0\right) −∞∬∞f(x,y)δ(x−x0,y−y0)dxdy=f(x0,y0) -
坐标缩放
δ ( a x , b y ) = 1 ∣ a b ∣ δ ( x , y ) \delta\left(ax,by\right) = \frac{1}{\left|ab\right|}\delta\left(x,y\right) δ(ax,by)=∣ab∣1δ(x,y) -
可分离变量
δ ( x , y ) = δ ( x ) δ ( y ) \delta\left(x,y\right) = \delta\left(x\right)\delta\left(y\right) δ(x,y)=δ(x)δ(y) -
乘积性质
f ( x , y ) δ ( x − x 0 , y − y 0 ) = f ( x 0 , y 0 ) δ ( x − x 0 , y − y 0 ) f\left(x,y\right)\delta\left(x-x_0,y-y_0\right) = f\left(x_0,y_0\right)\delta\left(x-x_0,y-y_0\right) f(x,y)δ(x−x0,y−y0)=f(x0,y0)δ(x−x0,y−y0) -
奇偶性
δ ( x , y ) = δ ( − x , y ) = δ ( x , − y ) = δ ( − x , − y ) δ ′ ( x , y ) = − δ ′ ( − x , − y ) \begin{array}{c} \delta\left(x,y\right) = \delta\left(-x,y\right) = \delta\left(x,-y\right) = \delta\left(-x,-y\right)\\[2mm] \delta'\left(x,y\right) = -\delta'\left(-x,-y\right) \end{array} δ(x,y)=δ(−x,y)=δ(x,−y)=δ(−x,−y)δ′(x,y)=−δ′(−x,−y) -
导数性质
∫ − ∞ ∞ f ( x ) δ ′ ( x − x 0 ) = − f ′ ( x 0 ) \int^\infty_{-\infty}f\left(x\right)\delta'\left(x-x_0\right) = -f'\left(x_0\right) ∫−∞∞f(x)δ′(x−x0)=−f′(x0) -
功率性质
x n δ ( n ) ( x ) = ( − 1 ) n n ! δ ( x ) x^n\delta^{\left(n\right)}\left(x\right) = \left(-1\right)^nn!\delta\left(x\right) xnδ(n)(x)=(−1)nn!δ(x)
梳妆函数
一维梳妆函数是间隔为1的
δ
\delta
δ函数的无穷序列
c
o
m
b
(
x
)
=
∑
n
=
−
∞
∞
δ
(
x
−
n
)
comb\left(x\right) = \sum\limits_{n=-\infty}^\infty\delta\left(x-n\right)
comb(x)=n=−∞∑∞δ(x−n)
周期为
Δ
\Delta
Δ时,
1
Δ
c
o
m
b
(
x
Δ
)
=
∑
−
∞
∞
δ
(
x
−
n
Δ
)
\frac{1}{\Delta}comb\left(\frac{x}{\Delta}\right) = \sum^\infty_{-\infty}\delta\left(x-n\Delta\right)
Δ1comb(Δx)=−∞∑∞δ(x−nΔ)
二维梳妆函数
c
o
m
b
(
x
,
y
)
=
c
o
m
b
(
x
)
c
o
m
b
(
y
)
comb\left(x,y\right) = comb\left(x\right)comb\left(y\right)
comb(x,y)=comb(x)comb(y)
梳妆函数的用途
-
抽样,把连续函数变成离散函数
f ( x ) c o m b ( x ) = ∑ n = − ∞ ∞ f ( n ) δ ( x − n ) f ( x , y ) c o m b ( x , y ) = ∑ n = − ∞ ∞ ∑ m = − ∞ ∞ f ( n , m ) δ ( x − n , y − m ) \begin{array}{c} f\left(x\right)comb\left(x\right) = \sum\limits_{n=-\infty}^\infty f\left(n\right)\delta\left(x-n\right)\\[2mm] f\left(x,y\right)comb\left(x,y\right) = \sum\limits_{n=-\infty}^\infty\sum\limits_{m=-\infty}^\infty f\left(n,m\right)\delta\left(x-n,y-m\right)\\[3mm] \end{array} f(x)comb(x)=n=−∞∑∞f(n)δ(x−n)f(x,y)comb(x,y)=n=−∞∑∞m=−∞∑∞f(n,m)δ(x−n,y−m) -
重复排列
f ( x ) ∗ c o m b ( x ) = ∑ n = − ∞ ∞ f ( x − n ) f\left(x\right)*comb\left(x\right) = \sum\limits_{n=-\infty}^\infty f\left(x-n\right) f(x)∗comb(x)=n=−∞∑∞f(x−n)