焦点三角形是解析几何小题中的常客,本文将主要介绍椭圆中焦点三角形的实用性质,在解题时可以提供新的思路。
01
焦点三角形的概念

02
焦点三角形的性质

此公式称为焦半径公式,画出准线即可证明,揭示了焦半径与顶点P的横坐标的关系。

此公式又称为椭圆的极坐标方程,对于涉及焦半径倾斜角的问题,可以考虑用这个公式。

此公式把焦半径乘积与点P的坐标联系起来,提供了一种便捷的思路。

此公式把焦半径乘积与焦点三角形的顶角联系起来,涉及角度的问题可以直接运用。

经典的焦点三角形面积公式,形式非常简洁,即使题目未涉及三角形面积,也可经常作为桥梁用于构建等式。

此公式称为焦点弦的弦长公式,给出了弦长与倾斜角之间的关系。

一般与横坐标相关的题目比较少,因为推导过程需要一定的平面几何功底,而纵坐标用处会比较大,因为推导过程仅仅使用了等积法(立体几何中也经常用到),推导难度并不大,涉及角平分线的问题都可以考虑使用。

此性质为焦点三角形内心坐标公式的直接应用。
03
总结
以上焦点三角形的常用性质,可以选择适当记忆,多了解性质可以为解题提供新的思路,甚至可以秒杀小题!