三角形内切圆半径python公式_椭圆中的焦点三角形有关性质

焦点三角形是解析几何小题中的常客,本文将主要介绍椭圆中焦点三角形的实用性质,在解题时可以提供新的思路。

01

焦点三角形的概念

ef04675d9c43c4d52241e051110230dd.png

02

焦点三角形的性质

34d85dabbe73e174e2dda27a5701f1e4.png

此公式称为焦半径公式,画出准线即可证明,揭示了焦半径与顶点P的横坐标的关系。

29abe2e04d84310ea1799eb312daa2ea.png

此公式又称为椭圆的极坐标方程,对于涉及焦半径倾斜角的问题,可以考虑用这个公式。

0c2c72603499acdfdb17c8dfaa610e60.png

此公式把焦半径乘积与点P的坐标联系起来,提供了一种便捷的思路。

fcce20b8193116ae260ea8dc4e89ac1f.png

此公式把焦半径乘积与焦点三角形的顶角联系起来,涉及角度的问题可以直接运用。

3173feecbf664fed8bdf847db9568e7e.png

经典的焦点三角形面积公式,形式非常简洁,即使题目未涉及三角形面积,也可经常作为桥梁用于构建等式。

63b588e56d5b9680ff37ab1c563e2ccb.png

此公式称为焦点弦的弦长公式,给出了弦长与倾斜角之间的关系。

1f82eb40a0484fc267d55b5a75239681.png

一般与横坐标相关的题目比较少,因为推导过程需要一定的平面几何功底,而纵坐标用处会比较大,因为推导过程仅仅使用了等积法(立体几何中也经常用到),推导难度并不大,涉及角平分线的问题都可以考虑使用。

41165d44a436e4d9dd293485af3f54fd.png

此性质为焦点三角形内心坐标公式的直接应用。

03

总结

以上焦点三角形的常用性质,可以选择适当记忆,多了解性质可以为解题提供新的思路,甚至可以秒杀小题!

编写程序。实现函数drawOneShape(t,x,y,r,n,c),该函数保留画笔原有颜色和角度,然后在小乌龟t的以(x,y)坐标为中心、用颜色c画一个半径为r的水平圆的内切正n边图形,如果n小于等于2则直接画圆,画完后恢复画笔原来的颜色和角度。调用该函数绘制如下一组图形,图形的坐标和大小可自行安排。 以下是一个使用turtle模块编写的完整解决方案,实现了您描述的功能: import turtle def drawOneShape(t, x, y, r, n, c): # 保存当前的颜色和角度 original_color = t.pencolor() original_heading = t.heading() # 设置新的位置,并将画笔抬起避免留下痕迹 t.penup() t.goto(x, y - r) t.setheading(0) # 确保朝向水平方向(向东) t.pendown() # 改变颜色为指定值c t.pencolor(c) if n <= 2: # 如果n<=2,则直接画圆 t.circle(r) else: # 否则根据半径计算边长并画出正n边形 side_length = 2 * r * (turtle.sin(turtle.radians(180 / n))) # 计算边长公式 angle = 360 / n # 每个角的角度 for _ in range(n): t.forward(side_length) t.left(angle) # 还原原来的状态 t.penup() # 抬起画笔回到原始状态 t.goto(x, y - r) # 返回中心点下方的位置 t.setheading(original_heading) t.pencolor(original_color) # 创建一个Turtle对象用于绘图测试 t = turtle.Turtle() # 示例调用函数绘制多个图形 drawOneShape(t, 0, 0, 50, 5, "red") # 在(0,0)处画红色五边形,半径为50 drawOneShape(t, 100, 100, 70, 3, "blue") # 在(100,100)处画蓝色三角形半径为70 drawOneShape(t, -100, 100, 40, 1, "green") # 在(-100,100)处画绿色圆形,半径为40 turtle.done() 解释 保存与恢复: 使用t.pencolor()获取并存储初始画笔颜色,使用t.heading()记录初始画笔指向的角度,在完成操作之后将其还原。 移动至目标位置: t.penup()让画笔不着地从而不会留下线条;通过t.goto(x, y-r)定位到圆心偏下的位置准备开始作图。 条件判断: 若参数n小于或等于2时执行t.circle(r)命令来生成所需大小的圆形; 当n > 2, 根据几何学原理求解每条边的具体长度以及旋转角度并通过循环构建多边形结构. 数学运算: 应用了基本三角函数关系式来确定每个顶点之间应有的距离。 注意事项 需要确保导入了正确的库并且初始化了一个有效的 Turtle 对象作为输入给定函数的第一个参数。 圆周率相关的数值由 Python 自带的标准 math 或者这里使用的 turtle 内嵌功能提供准确度保障. img 猜你想问 如何自定义调整上述代码使得能够支持不同类型的形状比如椭圆? 假如我想把所有创建出来的图像都填充特定的颜色怎么办? 是否可以通过修改现有逻辑实现动态交互界面让用户选择具体的属性呢? 深度思考 DeepSeek-R1 在此输入您的问题~ 所有内容均由AI模型输出,请遵守 《CSDN隐私协议》
03-30
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值