【大气】多时相 InSAR 中空间变化分层大气延迟校正联合模型研究(Matlab代码实现)

  💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、研究背景与意义

二、研究现状

三、研究内容

四、研究方法

五、预期成果

六、结论与展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

一、研究背景与意义

在InSAR(合成孔径雷达干涉测量)技术中,大气延迟是一个重要的误差来源,特别是在多时相InSAR监测地表形变时。大气延迟主要由电离层和对流层引起,这些大气层的时空变化会对雷达信号造成相位延迟,从而影响InSAR测量的精度。因此,开展多时相InSAR中空间变化分层大气延迟校正联合模型研究,对于提高InSAR技术的监测精度和可靠性具有重要意义。

二、研究现状

目前,国内外学者已经对InSAR大气延迟校正进行了大量研究,并提出了多种校正方法。例如,基于GPS的大气延迟校正方法、基于外部观测数据的大气延迟校正方法、以及基于多幅干涉图进行叠加或时间序列分析的方法等。然而,这些方法在实际应用中仍存在一些局限性,如GPS数据覆盖范围的限制、外部观测数据的获取难度以及多幅干涉图处理的时间成本等。

三、研究内容

本研究旨在构建一种多时相InSAR中空间变化分层大气延迟校正联合模型,该模型将结合多种校正方法,以提高校正的精度和效率。具体研究内容包括:

  1. 空间变化分层大气延迟特性分析:通过分析大气层的时空变化特性,以及其对InSAR测量的影响,为校正模型的构建提供理论基础。
  2. 联合模型构建:结合现有的大气延迟校正方法,构建一种多时相InSAR中空间变化分层大气延迟校正联合模型。该模型将考虑大气层的分层特性,以及不同层之间的相互作用。
  3. 模型验证与优化:利用实际观测数据和模拟数据对联合模型进行验证和优化,以确保模型的准确性和可靠性。

四、研究方法

本研究将采用以下研究方法:

  1. 数据分析与建模:利用统计学和机器学习等方法,对大气延迟数据进行分析和建模,以提取大气延迟的时空变化特性。
  2. 模型构建与验证:结合多种校正方法,构建联合模型,并利用实际观测数据和模拟数据进行验证和优化。
  3. 数值模拟与实验验证:通过数值模拟和实验验证,评估联合模型的校正效果和精度。

五、预期成果

本研究预期将取得以下成果:

  1. 构建一种多时相InSAR中空间变化分层大气延迟校正联合模型:该模型将结合多种校正方法,提高校正的精度和效率。
  2. 提高InSAR技术的监测精度和可靠性:通过校正大气延迟,提高InSAR技术在地质灾害监测、土地资源调查等领域的应用效果。
  3. 为相关领域的研究提供理论支持和技术参考:本研究成果将为相关领域的研究提供理论支持和技术参考,推动InSAR技术的进一步发展。

六、结论与展望

本研究通过构建多时相InSAR中空间变化分层大气延迟校正联合模型,旨在提高InSAR技术的监测精度和可靠性。未来,将继续深入研究大气延迟的校正方法和技术,推动InSAR技术在更多领域的应用和发展。同时,也将加强与其他学科的交叉融合,为InSAR技术的创新和发展提供更多可能性。

📚2 运行结果

主函数代码:

%% prepare input file
clear
clc
load point_ph % point file includes interferogram phase and pixel coordination information
load shortbaseline % baseline file include baseline information of interferograms
frequency=5.4050005e+09; % frequency of C band
c=299792458; % speed of light
wavelen=c/frequency; % wavelength
slantran=856456.4809; % slant range between SAR sensor and ground
incangle=33.9280; % incidence angle
width=1744; % width of SAR image
lines=2595; % lines of SAR image
spa_r=83.4743; % spatial resolution in range direction 
spa_azi=56.0328; % spatial resolution in azmith direction
%% generate parameter file
Input=parpre_step_without_obs_2023(shortbaseline,wavelen,slantran,incangle,spa_r,spa_azi,width,lines);
%% set threshold of window size and height difference for quadtree segmentation
Input.minw_ksize=4; % the minimum window size for quadtree segmentation
Input.hdiff_T=1000; % the height difference threshold for quadtree segmentation
%% implement tropospheric delay correction 
[detrend_point_ph, point_orbit_interf] = joint_de_atmos_base_on_patch_speedup_2023_test(point_ph,Input);
%% plot interferograms
% plot interferograms after tropospheric delay correction
figure,plot_map(detrend_point_ph(:,1:2),wrap(detrend_point_ph(:,5+1:5+9)),3);
% plot original interferograms
figure,plot_map(point_ph(:,1:2),wrap(point_ph(:,5+1:5+9)),3);

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]沙鹏程.InSAR垂直分层大气校正研究及其在断层形变监测中的应用[D].中国石油大学(华东),2020.

[2]Liang, H., Zhang, L., Lu, Z., & Li, X. (2023). Correction of spatially varying stratified atmospheric delays in multitemporal InSAR. Remote Sensing of Environment, 285, 113382.

[3]Liang, H., Zhang, L., Ding, X., Lu, Z., & Li, X. (2018). Toward mitigating stratified tropospheric delays in multitemporal InSAR: A quadtree aided joint model. IEEE Transactions on Geoscience and Remote Sensing, 57(1), 291-303.

🌈4 Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值