多无人机空中机器人施工任务分配(Matlab代码实现)

  👨‍🎓个人主页

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

多无人机空中机器人施工任务分配研究

一、定义与应用场景

二、研究方法与技术路线

三、关键技术指标

四、典型施工场景案例分析

五、挑战与未来方向

六、结论

📚2 运行结果

🎉3 参考文献

 🌈4 Matlab代码实现


💥1 概述

空中机器人作为近年来新兴的热点得到了广泛的关注。小型空中机器人在没有外界卫星定位信号的前提下的导航是空中机器人的研究内容中比较重要的一个问题,也提出了很多新的导航方法,视觉导航是其中比较重要的一个。

本文旨在实现多机器人任务分配(MRTA)问题的任务分配算法。

多无人机空中机器人施工任务分配研究

一、定义与应用场景

多无人机空中机器人施工任务分配旨在通过协同规划与动态调度,将施工任务(如结构搭建、材料运输、质量检测等)高效分配给无人机群,满足时间、资源、空间等多重约束。其核心目标是通过优化任务执行顺序、路径规划及负载均衡,提升施工效率与安全性。

典型应用场景包括

  1. 结构构建:如分布式桁架结构组装(Lindsey等人,2011)、立方体框架搭建(Lindsey等人,2013),通过多无人机协同完成复杂几何构件的空中定位与装配。
  2. 协同运输:利用可重构电缆驱动系统(Masone等人,2016)或多旋翼团队(Marina和Smeur,2019)实现重载物料的灵活搬运,适应施工现场的动态需求。
  3. 进度监测与质量检测:通过无人机搭载传感器进行实时施工进度跟踪(如华平无人机系统,2024)、结构变形监测(广东源建案例,2024),结合AI算法自动分析安全隐患。
  4. 应急场景施工:在森林火灾、地震救援中快速构建临时设施或执行危险区域作业(雅江火灾案例,2024;南京综合体火灾救援,2022)。

二、研究方法与技术路线

现有研究主要采用集中式与分布式混合架构,结合智能优化算法解决NP-hard问题。关键技术路线如下:

方法类别代表性算法特点与适用场景
集中式优化加权求和(WSM)、改进蛙跳算法(ISFLA)全局优化能力强,适用于静态任务分配(如Harmony DTA算法优化能耗与时间延迟)
分布式协同合同网协议(CNP)、CBBA算法支持动态任务插入,适应异构无人机群(如Zhen等人2021改进的CNP协议)
智能优化算法粒子群(PSO)、遗传算法、黑猩猩算法处理多目标冲突(如PSO优化路径长度与冲突避免;改进黑猩猩算法提升异构分配效率)
强化学习MASAC算法、多智能体DRL动态不确定环境下的实时决策(如方城亮等人设计的任务完成率与编队保持率优化)

模型构建要点


三、关键技术指标
  1. 通信协议

    • 合同网协议(CNP) :定义“经理-承包商”角色,通过投标-中标机制实现负载均衡(Lemaire等人引入公平因子参数)。
    • 分布式共识算法:如基于区块链的拍卖机制(Das等人,2015),减少通信延迟对任务分配的影响。
  2. 路径规划

    • 冲突避免机制:采用动态适应度函数(PSO算法中碰撞惩罚项)或人工势场法(Fu等人2019的碰撞抵抗模型)。
    • 三维路径生成:结合Voronoi图划分安全区域(西北工大DenseFusion方法,2023)。
  3. 负载均衡

    • 动态任务再分配:基于无人机剩余电量与任务优先级调整分配策略(如Notomista等人2019的在线重规划)。
    • 异构能力匹配:针对无人机载重、传感器类型差异设计专用分配规则(许子俍等人,2024)。
  4. 能耗优化

    • 速度自适应调节:通过任务分配后的速度优化降低总能耗(EurasianSciEnTech,2024)。
    • 协同充电调度:结合移动充电站(车机协同巡检模型)延长作业时间。

四、典型施工场景案例分析
  1. 高层建筑施工监测(上海建工案例,2024)

    • 任务分配策略:多机分区域巡检,结合BIM模型比对结构偏差。
    • 技术效果:异常检测响应时间缩短60%,人工巡检成本降低45%。
  2. 输电线路车机协同巡检(文献41,2021)

    • 分配模型:车辆作为移动基站划分作业圈,无人机按续航能力分配子任务。
    • 优化成果:覆盖面积提升3倍,任务完成时间减少28%。
  3. 无人机-高喷车协同灭火(南京案例,2022)

    • 动态分配机制:无人机实时回传火势数据,指挥高喷车调整喷射角度。
    • 应用价值:灭火效率提升40%,消防员暴露风险降低70%。

五、挑战与未来方向

当前主要挑战

  1. 动态环境适应性:突发任务插入与资源冲突(如工人临时进入作业区)的实时响应能力不足。
  2. 通信可靠性:复杂建筑环境下的信号衰减导致协同失效(需5G/6G网络增强)。
  3. 伦理与安全风险:无人机失控对施工人员的威胁(需强化边缘计算端的紧急制动算法)。

未来研究方向

  1. 数字孪生与仿真测试:构建VR/AR模拟平台(如Drone Robotic Construction,2024)预演施工流程。

  2. 跨学科技术融合:结合建筑材料学优化无人机抓取机构(如Krizmancic的空中-地面机器人协同)。

  3. 轻量化AI模型:开发适用于边缘设备的微型强化学习模型(DistilBERT级轻量化107)。

  4. 标准化与法规建设:制定施工无人机空域管理、责任划分的国际标准。


六、结论

多无人机空中机器人施工任务分配是建筑自动化升级的核心技术之一。通过智能算法优化、通信协议创新与跨领域技术整合,未来将在复杂场景施工、应急救援等领域发挥更大作用。然而,动态环境适应性、安全性保障与标准化建设仍需学术界与产业界协同突破。

📚2 运行结果

 

 

部分代码:

clc;
clear;
%% initialization

% Define the position of the robots
% % Robot_position=[1,2;1,4;1,6;1,8;1,10];
% UAV_position=[5,7;3,2;7,13;6,9;5,5];
UAV_position = [70,69;89,25;86,45];
% % Define the target positions
% Target_position=[3,6;5,4;5,6;5,8;8,6];
Target_position = [80,63;22,49;61,40];

% Random position
UAV_number=3; % The number of UAVs
task_number=3; % The number of Target positions
SizeofMap = [1 100];
size_UAV = 0;
size_task = 0;
 
% while (size_UAV<UAV_number && size_task < task_number)
%     UAV_position = randi(SizeofMap,UAV_number,2);
%     Target_position = randi(SizeofMap,task_number,2);
%     % UAV_position = unique(UAV_position,'rows');
%     % Target_position = unique(Target_position,'rows');
%     size_UAV = size(unique(UAV_position,'rows'),1);
%     size_task = size(unique(Target_position,'rows'),1);
% end


% Initial the speed of UAVs
UAV_speed=ones(UAV_number,1)*50;

%% Construct the cost matrix
% while( task_number >= UAV_number)
judge = 1;
while (isempty(Target_position) == 0)
    
    if (judge == 1)
        Cost=CostMatrixConstruction(UAV_position,Target_position,UAV_number,UAV_speed,task_number);
        
        %% Hungarian Algorithm
        Best_Strategy = HungarianAlgorithm(Cost);
        % find the allocation method for at that moment
        Best_Strategy=Best_Strategy(:,1:UAV_number);
        Best_Strategy = unique(Best_Strategy,'rows');
        if (size(Best_Strategy,1)>1)
            Best_Strategy = Best_Strategy( randi(size(Best_Strategy,1)) ,:);
        end
    end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

[1] Chen, Xia, and Yan-zhi Qiao. "Summary of unmanned aerial vehicle task allocation." Journal of Shenyang Aerospace University 33.6 (2016): 1-7.

[2] Wang, Jianping, Yuesheng Gu, and Xiaomin Li. "Multi-robot task allocation based on ant colony algorithm." Journal of Computers 7.9 (2012): 2160-2167.

 🌈4 Matlab代码实现

代码下载:完整代码,可直接运行 ;运行版本:2014a或2019b;若运行有问题,可私信博主; **仿真咨询 1 各类智能优化算法改进及应用** 生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化 **2 机器学习和深度学习方面** 卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断 **3 图像处理方面** 图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知 **4 路径规划方面** 旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化 **5 无人机应用方面** 无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配 **6 无线传感器定位及布局方面** 传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化 **7 信号处理方面** 信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化 **8 电力系统方面** 微电网优化、无功优化、配电网重构、储能配置 **9 元胞自动机方面** 交通流 人群疏散 病毒扩散 晶体生长 **10 雷达方面** 卡尔曼滤波跟踪、航迹关联、航迹融合
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值