多无人机(UAV)协同任务分配

一.协同任务规划的功能与结构

多无人机协同任务规划即是根据一组特定条件的约束,以实现某个准则函数的最优或次优为目标,将某项作战任务分解成一些子任务并分配给多无人机系统中的各个无人机分别去完成的过程。 通常多无人机任务规划可以分成两大部分:上层的任务分配(Task Assignment or Task Allocation)和下层的路径规划(Path Planning)

任务分配考虑各种约束条件,以总体任务有效达成为目标,将具体目标和行动任务分配给各机,而各机根据分配的任务再进行具体的作战路径规划。

而路径规划的功能是在满足如最大线性速度、最大转角速度、操作的安全性、时间和环境变量等自身或外部限制的前提下在一系列位置之间设计或生成路径。同时,多无人机协同任务规划系统本身又是整个多无人机协同控制系统的重要组成部分。

二.任务分配

按照无人机作战任务之间的相关联性,可归类为
1.独立任务分配
2.协同任务分配
按照无人机作战任务所处环境可分为
1.静态任务分配
2.动态任务分配
按照分配方法可分为
1.集中式任务分配
2.分布式任务分配
3.分层式分布任务分配

协同任务分配

多无人机协同任务分配的目标是在考虑各种诸如任务执行顺序、时间、无人机自身物理条件等约束条件的前提下,以总体任务效率最优或次优为目标,离线地或实时地将具体目标和行动任务分配给各机。

三.建模

以集中式控制系统为基础进行任务分配最常用的模型有
多旅行商问题(multiple traveling salesman problem,MTSP)模型[13]、
车辆路径问题(Vehicle Routing,VRP)模型[14]、
多机路径分配模型(mVRP)[19]、
混合整数线性规划问题(Mixed-Integer Linear Programming ,MILP,)模型[15]、
动态网络流优化(Dynamic Network Flow Optimization ,DNFO)模型[16]、
多处理器资源分配问题模型(Multiple Processsors Resources Allocation ,CMTMP)模型[17]
除了上述模型外,美国空军研究实验室在无人机任务分配研究中建立了
带时间窗的不同能力约束车辆路径问题(CVRPTW,Capacitated Vehicle Routing Problem with Time Windows)

四.方法

1. 集中式任务分配方法

集中式控制系统就是编队中的无人机之间的通信、信号的传输和控制均由唯一的一个控制中心来进行。
常用的模型有MTSP、VRP、MILP、DNFO、CMTAP。

1.1最优化方法

(1)穷举法,适用于离散且规模小的情况
(2)整数规划法(Mixed-Integer Linear Programming,MIP)根据既定的目的和目标,通过建立目标函数和约束条件的方法对规模较小的任务分配问题进行解决的一种最优化方法矩阵作业法、单纯型法、匈牙利法、分支定界法等是比较常用的整数规划方法。
(3)约束规划(Constaint Programming CP)方法由变量集和约束集两者组成,变量集内的所有变量都有自己对应的值域,且变量的取值也只能从其值域中选取,它是求解组合优化问题的一种通用方法。
(4)图论方法是通过图示的方法把任务和接受任务的成员特征表述出来,同时在任务和系统成员之间用图论方法建立匹配,以此设计出合理可行的任务分配方案。网络流模型和偶图匹配模型是两种经典的图

评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值