【高创新】考虑多策略融合与评价的RFR-GBR-DTR风光负荷时间序列预测模型(Python代码实现)

    💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、模型定义与原理

1. 随机森林回归(RFR)

2. 梯度提升回归(GBR)

3. 决策树回归(DTR)

二、风光负荷时间序列预测的挑战与方法

1. 数据特性

2. 多策略融合的必要性

3. RFR-GBR-DTR的融合框架

三、评价指标体系

多模型对比分析

四、模型融合的优势与挑战

1. 优势

2. 挑战

五、未来研究方向

六、结论

📚2 运行结果

🎉3 参考文献 

🌈4 Python代码、数据下载


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

一、模型定义与原理

1. 随机森林回归(RFR)
  • 原理:RFR是一种基于集成学习的算法,通过构建多棵决策树并对其结果取平均来降低方差和过拟合风险。其核心是“袋装采样”(Bootstrap Aggregating),每棵树在随机抽样的数据子集和特征子集上训练,最终通过投票或平均输出结果。
  • 关键参数n_estimators(树的数量)、max_depth(树的最大深度)。研究表明,增加树的数量可提升模型稳定性,但需权衡计算成本。
  • 优势:适用于高维数据和非线性关系,抗噪声能力强。
2. 梯度提升回归(GBR)
  • 原理:GBR通过迭代训练弱学习器(通常是浅层决策树)来修正前序模型的残差。每次迭代的目标是最小化损失函数(如均方误差MSE),逐步逼近真实值。
  • 关键机制:学习率(learning_rate)控制每棵树的贡献权重,n_estimators决定迭代次数。GBR对异常值敏感,但能捕捉复杂模式。
  • 优势:在光伏材料预测中,GBR的准确率比传统模型高10%-45%。
3. 决策树回归(DTR)
  • 原理:DTR通过递归分割特征空间构建树结构,选择使均方误差(MSE)差异最大的分割点。最终叶节点保存样本均值作为预测值。
  • 关键参数min_samples_leaf(叶节点最小样本数)和max_depth(树深度)影响模型复杂度与泛化能力。
  • 应用案例:在风速预测中,DTR的R²可达0.9993,但误差较高(MSE=27.43)。

二、风光负荷时间序列预测的挑战与方法

1. 数据特性
  • 风光负荷序列具有多周期性(如日/季节周期)、非平稳性(受天气突变影响)和高噪声(传感器误差)。
  • 传统方法(如ARMA)依赖平稳性假设,难以应对突变。
2. 多策略融合的必要性
  • 分解-集成策略:例如VMD(变分模态分解)可将原始序列分解为平稳子序列,再分别建模。

  • 模型结构融合:如CNN提取局部特征,LSTM捕捉长期依赖,Transformer建模全局关系86。

     

  • 结果融合策略:加权平均、堆叠(Stacking)或动态权重分配(如自注意力机制)。

3. RFR-GBR-DTR的融合框架
  • 并行融合:三模型独立预测后加权平均,权重可通过误差倒数法或网格搜索优化。
  • 级联融合:DTR作为基线模型,GBR修正其残差,RFR进一步集成结果。
  • 案例参考:VMD-RFR组合模型在风电功率预测中显著降低MAE至17.13,优于单一模型。

三、评价指标体系

多模型对比分析
  • 光伏功率预测:RFR的R²=0.9995显著优于DTR(R²=0.9993)和线性回归(R²=0.85)。
  • 风电功率预测:VMD-RFR模型的MAE=17.13,较单一模型降低25%。

四、模型融合的优势与挑战

1. 优势
  • 准确性提升:RFR和GBR通过集成降低方差,DTR提供可解释性,三者互补。
  • 鲁棒性增强:多模型融合可抵抗单一模型过拟合或噪声干扰。
  • 灵活性:支持动态调整策略(如在线学习更新权重)86。
2. 挑战
  • 计算成本:融合模型训练时间随模型数量增加,如RFR需数百棵树。
  • 解释性下降:复杂融合机制可能成为“黑箱”,需结合SHAP值等方法增强可解释性。
  • 超参数优化:需平衡三模型的参数交互,如GBR的学习率与RFR的树数量。

五、未来研究方向

  1. 自适应融合策略:引入强化学习动态调整模型权重86。
  2. 轻量化设计:通过剪枝(Pruning)或知识蒸馏降低计算复杂度。
  3. 多模态数据融合:结合气象卫星数据、设备状态监测等多源信息。

六、结论

RFR-GBR-DTR多策略融合模型通过集成决策树的解释性、随机森林的鲁棒性和梯度提升的精确性,在风光负荷预测中展现出显著优势。结合分解方法和动态融合策略,可进一步提升对非平稳序列的适应性。未来需在计算效率与预测精度之间寻求更优平衡,并探索跨学科融合的可能性。

📚2 运行结果

🎉3 参考文献 

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

[1]江斌超,农业工程与信息技术.基于机器学习和时间序列的黄淮海小麦产量预测方法研究[D].河南农业大学[2025-03-13].

[2]张泽浩.考虑风光及需求不确定性的园区分布式能源虚拟电厂运行经济优化研究[D].中国石油大学(北京),2019.

[3]罗钢,石东源,陈金富,等.风光发电功率时间序列模拟的MCMC方法[J].电网技术, 2014, 38(2):7.

🌈Python代码、数据下载

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值