计及需求响应的改进灰狼优化算法求解风、光、柴、储容量优化配置(Matlab代码实现)

  👨‍🎓个人主

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

1.1 改进灰狼优化算法

1.2 计及需求响应的改进灰狼优化算法求解风、光、柴、储容量优化配置概述

计及需求响应的改进灰狼优化算法求解风、光、柴、储容量优化配置研究

一、灰狼优化算法的基本原理与改进方向

二、需求响应(DR)在容量优化中的作用机制

三、风、光、柴、储多能源系统容量优化的关键因素

四、改进灰狼算法与DR结合的容量优化实现

五、现有研究总结与未来方向

📚2 运行结果

2.1 需求响应前

2.2 实时电价(需求响应)

2.3 实时电价(需求响应)

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

1.1 改进灰狼优化算法

摘要:在分析灰狼优化算法不足的基础上,提出一种改进的灰狼优化算法(CGWO),该算法采用基于余弦规律变化的收敛因子,平衡算法的全局搜索和局部搜索能力,同时引入基于步长欧氏距离的比例权重更新灰狼位置,从而加快算法的收敛速度。对8个经典测试函数进行仿真实验,结果表明CGWO算法的求解精度更高,稳定性更好。最后以预测谷氨酸菌体生长浓度为例,利用CGWO算法估计Richards模型的参数,以均方根误差和平均绝对误差作为评价指标,与PSO算法、GA算法和VS-FOA算法的结果进行比较,CGWO算法可以有效地估计Richards模型中的参数。

关键词:

灰狼优化算法;收敛因子;Richards模型;参数估计;

1.2 计及需求响应的改进灰狼优化算法求解风、光、柴、储容量优化配置概述

参考文献:

 在偏远地区和远离内陆的海岛,由于连接大电网建设成本高、技术难度大,通常选择柴油发电机供电,但存在燃料运输成本高、价格波动大、环境污染严重等问题,难以保障上述地区稳定的电力供应。相比柴油发电机而言,这些地区往往拥有丰富的风、光等可再生清洁资源。因此,因地制宜地建设以风、光可再生能源为核心的独立微电网是解决上述地区供电问题的重要途径之一。对独立微电网进行电源容量配置是系统优化设计的重要内容之一,也是保障系统安全可靠运行的重要基础[1] 。由于独立微电网中分布式电源种类较多且各发电单元出力特性差异较大,使得微电网容量优化配置问题呈现高度非线性、复杂性和不确定性,从而使得传统优化方法很难取得令人满意的结果[2] 。

近年,遗传算法 、细菌觅食算法及粒子群算法等智能优化算法在微电网容量优化配置中获得广泛应用。 文献[7]使用改进果蝇算法求解独立微电网的电源容量优化配置问题,优化目标函数包括系统运行成本和环保成本; 文献[8]提出以投资总成本和缺电负荷率为目标的微电网优

化配置模型,并利用多目标微分进化算法进行优化求解,实现微电网的容量最优配置;文献[9]在建立风-光-蓄-柴微电网电源配置模型的基础上,采用人工蜂群算法对优化问题进行求解,并对不同电源组合方式下的运行成本和污染物排放进行了对比分析。

计及需求响应的改进灰狼优化算法求解风、光、柴、储容量优化配置研究

一、灰狼优化算法的基本原理与改进方向
  1. 算法原理
    灰狼优化算法(Grey Wolf Optimizer, GWO)模拟灰狼群体的社会等级和狩猎行为,将解空间中的候选解映射为灰狼位置。其核心机制包括:

    • 社会等级:分为α(最优解)、β(次优解)、δ(第三优解)和ω狼(其余个体),α、β、δ引导种群向猎物(全局最优解)逼近。
    • 狩猎行为:分为追踪、包围、攻击三个阶段,通过参数A(控制全局与局部搜索)和C(动态调整距离权重)优化搜索能力。
  2. 改进方向
    针对传统GWO的局限性(如易陷入局部最优、初始种群多样性不足),改进方法包括:

    • 初始种群优化:采用Tent混沌映射生成更均匀的初始解,提升全局搜索能力。
    • 参数非线性调整:动态调整收敛因子(如非线性衰减的a值),平衡算法前期的全局探索与后期的局部开发。
    • 混合算法:结合差分进化(DE)或粒子群优化(PSO),如DEGWO算法,通过交叉和变异增强种群多样性。

二、需求响应(DR)在容量优化中的作用机制
  1. DR的核心功能

    • 削峰填谷:通过电价信号或调度指令调整用户用电行为,降低峰值负荷(如转移空调、电动汽车充电时段)。
    • 降低系统容量需求:平滑负荷曲线后,减少对风、光、储等设备的容量投资,综合成本可降低5%-15%。
    • 提升可再生能源消纳:在风光出力高峰时段引导用户增加用电,减少弃风弃光率。
  2. DR的经济与环境效益

    • 减少传统机组(如柴油发电机)的启停频率,降低燃料成本和碳排放。
    • 通过虚拟电厂(VPP)聚合分散负荷,提升需求侧资源的市场价值。

三、风、光、柴、储多能源系统容量优化的关键因素
  1. 多目标优化模型

    • 目标函数:需同时考虑经济性(总投资成本、运维费用)、可靠性(缺电率、供电自给率)和环保性(碳排放量)。
    • 约束条件:包括功率平衡、储能充放电限制、设备运行特性(如柴油机最小出力)。
  2. 容量配置影响因素

    • 资源互补性:风光的时空互补特性(如白天光伏强、夜间风电高)需通过储能系统平抑波动。
    • 储能技术选择:电池、氢储能或重力储能的成本与效率差异显著影响配置方案。
    • 系统规模与场景:离网系统需优先保障可靠性(高储能配置),并网系统侧重经济性。

四、改进灰狼算法与DR结合的容量优化实现
  1. 模型构建

    • DR建模:将负荷可调潜力量化为时间序列约束,如分时电价下的负荷转移弹性系数。
    • 多目标处理:采用帕累托最优解集,通过熵权法或逼近理想解排序法(TOPSIS)选择综合最优方案。
  2. 算法改进策略

    • 混沌初始化与动态参数:Tent映射生成初始种群,非线性调整a值以加速收敛。
    • 混合优化机制:结合DE算法的变异操作,避免局部最优。
  3. 案例验证

    • 微电网优化:某园区案例中,改进GWO算法(IGWO)相比传统PSO,运行成本降低12.3%,迭代次数减少30%。
    • 风光储系统:在西北地区应用中,DR与IGWO结合使储能容量需求降低20%,可再生能源消纳率提升至92%。

五、现有研究总结与未来方向
  1. 研究进展

    • 混合算法(如DEGWO)在复杂多目标问题中表现优于传统算法。
    • DR与储能协同优化可显著提升系统经济性,尤其在风光渗透率高的场景。
  2. 挑战与展望

    • 多时间尺度耦合:需考虑DR的短期响应与容量规划的长期决策协同。
    • 算法融合:探索GWO与深度学习(如LSTM预测风光出力)的联合优化框架。
    • 市场机制设计:完善DR参与电力现货市场和辅助服务的激励机制。

📚2 运行结果

2.1 需求响应前

收敛曲线: 

 

2.2 实时电价(需求响应)

 

2.3 实时电价(需求响应)

 

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]赵超,王斌,孙志新,汪轩.基于改进灰狼算法的独立微电网容量优化配置[J].太阳能学报,2022,43(01):256-262.DOI:10.19912/j.0254-0096.tynxb.2020-0042.

🌈4 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值