Contrastive Embedding for Generalized Zero-Shot Learning<2021CVPR阅读笔记>

本文介绍了2021年CVPR会议上的一篇论文,该论文探讨了如何通过对比嵌入改进传统零次学习(ZSL)方法,尤其是针对广义零次学习(GZSL)。论文提出了一种混合GZSL框架,结合实例级和类级对比嵌入,以减少对见过类别的依赖,提高未见过类别的识别能力。通过特征生成和对比学习策略,模型能更好地学习到区分性的特征,从而在原始特征空间和嵌入空间中实现有效分类。
摘要由CSDN通过智能技术生成

论文出处:Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021

目录

背景 

混合GZSL框架

对比嵌入

实例级对比嵌入

类级对比嵌入


背景 

        这篇论文出自2021年CVPR,这篇论文在传统ZSL的基础上进行了改进,个人觉得还是有很多值得学习的地方。

        首先,归纳总结一下,传统的ZSL的做法是学习一个语义嵌入函数,即将视觉特征映射到语义描述空间。然后,在改语义描述空间上,将嵌入的数据点与给定的类及层次语义描述符进行比较(比较他们的分布即可,嵌入的数据点离哪个语义描述符近,就属于什么类别),进而完成分类。这一整个分类操作过程,都是基于这一个语义嵌入空间完成。

        解释:类级语义描述符,例如,加菲猫,那么它的描述符有:橘黄色毛发、四条腿、白胡须等...

        现在大多数人研究的ZSL都是广义零次学习即(GZSL),相比与传统的ZSL,最大的区别在于其测试集中的图片是否在训练集中出现过。传统的ZSL,它的测试集完全是训练集中未出现过的样本。然而这样训练出来的模型在现实中的应用不够广泛,好的模型应该是既能够很好的识别训练期间出现过的类别样本,同时也能识别未在训练期间出现过的类别样本。后者便被称之为GZSL(广义零次学习)。

        针对GZSL,存在的一大挑战,由于测试阶段要考虑seen类图片,那么它会更加关注seen类图片,这主要是因为unseen类别未参与训练,模型对其视觉特征不敏感,不容易发掘其显著特征信息,这便是unseen类别图片分类出现错误的主要原因。(同时,还有一部分的解释是,模型对seen类别图片的训练已经是过拟合的,这也会导致其对unseen类图片不敏感。)

        克服这种常见的bias问题的方法有:方法一,为了解决上述提出的过拟合问题,通过设计新的损失函数来平衡unseen类和seen类之间的预测;方法二,提出特征生成的方式,合成unseen类别的图像样本参与训练过程,该方法可以克服unseen训练样本不足问题。[在原始特征空间上生成unseen类别特征],然后当作普通的分类问题进行处理。值得注意的是传统的ZSL都是在语义空间上进行分类,而该方法是在普通的特征空间上进行分类,这种方法的好处在于,图像相比文本携带 更多的显著信息。

        方法二直击痛点,因为缺乏unseen类别的视觉特征导致模型对unseen类样本不敏感,那我们就先将它的视觉特征合成出来参与训练,那么我们的模型就能够实现分类。看到这的时候,就觉得这也太机智了吧。这种特征生成的方法也是近几年ZSL的趋势走向。

        


回归本篇论文,它也是一种特征生成的方法。同时,作者还提出了一个很少被人关注到的实例监督

  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值