Contrastive Embedding for Generalized Zero-Shot Learning:广义零样本学习的对比嵌入

该论文提出了一种混合广义零样本学习(GZSL)框架,通过集成生成模型和嵌入模型来解决数据不平衡问题。核心创新是对比嵌入(CE),它同时利用类监督和实例监督,提高了GZSL的性能。实验表明,这种方法在多个基准数据集上取得了最先进的或极具竞争力的结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CVPR 2021 paper

1.摘要

广义零样本学习(GZSL)的目标是当只提供可见类的已标记示例来识别可见类和不可见类的对象

生成模型可以合成不可见的类中缺失的视觉特征,以减轻GZSL中的数据不平衡问题。然而,由于原始的视觉特征空间缺乏区分信息,对于GZSL分类是次优的。

我们建议将生成模型与嵌入模型集成,从而产生一个混合的GZSL框架。混合GZSL方法将生成模型产生的真实样本和合成样本映射到一个嵌入空间中,在那里我们执行最终的GZSL分类。

具体来说,我们为我们的混合GZSL框架提出了一个对比嵌入(CE)。所提出的对比嵌入不仅可以利用类监督,还可以利用实例监督,而后者通常被现有的GZSL研究所忽视。

2.思想

在语义空间中,我们可以通过直接将嵌入的数据点与给定的类级语义描述符进行比较来进行ZSL分类。语义嵌入方法在传统的ZSL中表现出色,但在更具挑战性的GZSL场景中,它们的性能大幅下降,因为它们在测试阶段严重偏向于可见类。

特征生成方法可以弥补不可见类训练样本的不足。将真实可见的训练特征和合成的不可见特征结合起来,可以训练一个监督模型来实现GZSL分类。然而,特征生成方法在原始特征空间中产生合成的视觉特征会远离语义信息,因此缺乏判别能力,对于GZSL分类来说是次优的。

为了两全其美,在本文中,我们提出了一个混合GZSL框架,将嵌入模型嫁接到特征生成模型之上。在我们的框架中,我们将特征生成模型产生的真实可见特征和合成不可见特征映射到新的嵌入空间。我们在新的嵌入空间中执行G

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值