【零样本知识蒸馏】(九)ICCV 2021:Feature Refinement for Generalized Zero-Shot Learning

本文提出FREE方法解决GZSL中由跨数据集偏差导致的视觉特征质量问题。通过特征细化模块(FR)和自适应边缘中心损失(SAMC-loss),改善预训练CNN在GZSL任务上的性能。FREE结合语义周期一致性损失,优化可见与不可见类别的识别效果。
摘要由CSDN通过智能技术生成

论文地址:

https://arxiv.org/abs/2107.13807

代码地址:

https://github.com/shiming-chen/FREE

主要问题:

广义零镜头学习(GZSL)取得了重大进展,许多努力致力于克服视觉-语义领域差距和看不见的偏差的问题,然而大多数现有的方法直接使用仅在 ImageNet 上训练的特征提取模型,而忽略了ImageNet和GZSL基准之间的跨数据集偏差,这种偏差不可避免地会导致GZSL任务的视觉特征质量较差,这可能会限制可见类和看不见类的识别性能

主要思路:

这篇文章提出了一种简单而有效的GZSL方法,称为广义零镜头学习(FREE)来解决上述问题

FREE使用了一个特征细化(FR)模块,该模块将语义→视觉映射集成到一个统一的生成模型中,以细化可见的和看不见的类样本的视觉特征

此外作者还提出了一种自适应边缘中心损失(SA

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BIT可达鸭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值