【零样本知识蒸馏】(九)ICCV 2021:Feature Refinement for Generalized Zero-Shot Learning
论文地址:
https://arxiv.org/abs/2107.13807
代码地址:
https://github.com/shiming-chen/FREE
主要问题:
广义零镜头学习(GZSL)取得了重大进展,许多努力致力于克服视觉-语义领域差距和看不见的偏差的问题,然而大多数现有的方法直接使用仅在 ImageNet 上训练的特征提取模型,而忽略了ImageNet和GZSL基准之间的跨数据集偏差,这种偏差不可避免地会导致GZSL任务的视觉特征质量较差,这可能会限制可见类和看不见类的识别性能
主要思路:
这篇文章提出了一种简单而有效的GZSL方法,称为广义零镜头学习(FREE)来解决上述问题
FREE使用了一个特征细化(FR)模块,该模块将语义→视觉映射集成到一个统一的生成模型中,以细化可见的和看不见的类样本的视觉特征
此外作者还提出了一种自适应边缘中心损失(SA