Python实现多种图像分割方法:基于阈值分割和基于区域分割

Python实现多种图像分割方法:基于阈值分割和基于区域分割

图像分割是图像分析的第一步,是计算机视觉的基础,但也是图像处理中最困难的问题之一。经典的计算机视觉任务,如目标检测、图像识别等都和图像分割相关,图像分割的好不好直接决定目标检测识别的准确不准确。

本文首先介绍了基于阈值和区域增长的图像分割方法。

然后针对图片中的书本和窗户旁边的人进行实验,并结合同态滤波和形态学算法对识别效果进行了优化。

图像分割

分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交的区域,使得这些特征在同一区域内表现出一致性或相似性,而在不同区域间表现出明显的不同。简单的说就是在一幅图像中,把目标从背景中分离出来。

图像分割实质上是图像处理到图像分析的关键步骤,图像分割的好坏直接决定了后期图像分析的精准性。因此我们需要根据图像的特征设计不同的图像分割方法。现有的图像分割方法主要分以下几类:基于阈值的分割方法、基于区域的分割方法、基于边缘的分割方法以及基于特定理论的分割方法等。

基于阈值的图像分割

基于阈值的分割方法,是指基于图像的灰度特征来计算一个或多个灰度阈值,并将图像中每个像素的灰度值与阈值作比较,最后将像素根据比较结果分到合适的类别中。因此,该方法最为关键的一步就是按照某个准则函数来求解最佳灰度阈值。之所以能对灰度图像采用阈值分割,是因为灰度图像中区域内部的像素一般具有灰度相似性,而在区域的边界上一般具有灰度不连续性。所以阈值法特别适用于目标和背景占据不同灰度级范围的图片。

常用的阈值分割方法有Ostu阈值分割,自适应阈值分割,最大熵阈值分割,迭代阈值分割等。

图像若只有目标和背景两大类,那么只需要选取一个阈值进行分割,此方法成为单阈值分割;但是如果图像中有多个目标需要提取,单一阈值的分割就会出现作物,在这种情况下就需要选取多个阈值将每个目标分隔开,这种分割方法称为多阈值分割。本文主要采用的是单阈值分割法。

阀值分割方法的优点是计算简单且效率高,但缺点是只考虑了像素点灰度值本身的特征,没有考虑空间特征,因此对噪声比较敏感,鲁棒性不高。

由于阈值分割方法的关键在于阈值的选择,因此如果能将智能遗传算法应用在阀值筛选上,选取最优分割图像的阀值,能够更进一步提升阈值图像分割方法的效果。

基于区域的图像分割

基于区域的分割方法是以直接寻找区域为基础的分割技术,有两种基本形式:一种是基于区域生长的方式,从单个像素出发,逐步合并以形成所需要的分割区域;另一种是基于区域分裂的方式,从全局出发,逐步切割至所需的分割区域。

本文采用的是基于区域增长的方法,区域生长是指从一组代表不同生长区域的种子像素开始,接下来将种子像素邻域里符合条件的像素合并到种子像素所代表的生长区域中,并将新添加的像素作为新的种子像素继续合并过程,直到找不到符合条件的新像素为止,该方法的关键是选择合适的初始种子像素以及合理的生长准则。基于区域增长的方法计算也相对简单,同时对于较均匀的连通目标有较好的分割效果,但也经常会出现欠生长或过生长的情况。

区域生长算法需要解决的三个问题:

(1)选择或确定一组能正确代表所需区域的种子像素;

(2)确定在生长过程中能将相邻像素包括进来的准则;

(3)指定让生长过程停止的条件或规则。

形态学算法

形态学算法一般是针对二值图像,进行边界提取,骨架提取,孔洞填充,角点提取,图像重建等。基本的算法:膨胀、腐蚀、开操作和闭操作。形态学算法可以保持图像基本的形状特征,并除去不相干的结构特征。因此可以引入形态学算法来改善图像分割的效果。

Python代码实现图像分割

导入包:

import cv2
from  matplotlib import pyplot as plt
%matplotlib inline

读取原始图和灰度化:

def cv_show(name,img):
    cv2.namedWindow(name,0)
    cv2.resizeWindow(name,700,900)
    cv2.imshow(name,img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    
raw_person = cv2.imread('images/person.png')
cv_show('raw_person', raw_person)

gray_person = cv2.imread('images/person.png', flags=cv2.IMREAD_GRAYSCALE)
cv_show('gray_person', gray_person)
cv2.imwrite('results/person/gray_person.jpg',gray_person)

绘制灰度图和灰度直方图:

import numpy as np
hist = np.histogram(gray_person, bins=np.arange(0, 256), normed=True)
fig, axes = plt.subplots(1, 2, figsize=(20, 10))
axes[0].imshow(gray_person, cmap=plt.cm.gray, interpolation='nearest')
axes[0].axis('off')
axes[1].plot(hist[1][:-1], hist[0], lw=2)
axes[1].set_title('histogram of gray values')
plt.show()

定义形态学算法函数:

def img_morph(img, size=5, method='open', element='rect'):
    '''
    img: binary image
    size: the size of square used to do morphological filtering
    method: open or close or erode or dilate
    element: structure element, rect or circle or cross
    '''
    if element == 'rect':
        kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (size, size))
    elif element == 'circle':
        kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (size, size))
    elif element == 'cross':
        kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (size, size))

    if method == 'open':
        img = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)
    elif method == 'close':
        img = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)
    elif method == 'erode':
        img = cv2.morphologyEx(img, cv2.MORPH_ERODE, kernel)
    elif method == 'dilate':
        img = cv2.morphologyEx(img, cv2.MORPH_DILATE, kernel)
    
    return img

基于阈值的图像分割:

t0=170
segmented_gray_img2 = np.where(gray_person[...,:] < t0, 255, 0).astype(np.uint8)

cv_show('segmented_gray_image',segmented_gray_img2)

形态学滤波:

open_person=img_morph(segmented_gray_img2,size=200,method='open')
cv_show('open_person', open_person)

dilate_person=img_morph(open_person,size=10,method='dilate')
cv_show('dilate_person', dilate_person)

close_person=img_morph(dilate_person,size=100,method='close')
cv_show('close_person', close_person)

dilate_person1=img_morph(close_person,size=20,method='dilate')
cv_show('dilate_person1', dilate_person1)

segmented_person=cv2.bitwise_and(raw_person,raw_person,mask=dilate_person1)
cv_show('segmented_person', segmented_person)
cv2.imwrite('results/person/segmented_threshold_person.jpg',segmented_person)

基于区域增长的图像分割:

def region_grow(img, seeds, threshold):
    '''
    select the bgd pixel attentionally to simplify the problem
    img: gray scale image
    seeds: the seed pixels
    '''
    seed_list = seeds
    neighbors = [[-1,-1],[-1,0],[-1,1],[0,-1],[0,1],[1,-1],[1,0],[1,1]]
    is_search = np.zeros(img.shape)
    is_add = np.zeros(img.shape)
    for seed in seeds:
        is_add[seed[0], seed[1]] = 1
    grow_img = np.ones(img.shape).astype(np.uint8)*255
    # mean_value = img[seed[0], seed[1]]
    cnt = 1
    while(len(seed_list)>0):
        cnt += 1
        seed = seed_list.pop()
        grow_img[seed[0], seed[1]] = 0
        is_search[seed[0], seed[1]] = 1
        for neighbor in neighbors:
            # print(neighbor, seed)
            neighbor_x = seed[0]+neighbor[0]
            neighbor_y = seed[1]+neighbor[1]
            if neighbor_x < 0 or neighbor_y < 0 or neighbor_x >= img.shape[0] or neighbor_y >= img.shape[1]:
                continue
            elif is_search[neighbor_x, neighbor_y] == 1 or is_add[neighbor_x, neighbor_y] == 1:
                continue
            # elif abs(img[neighbor_x, neighbor_y] - mean_value) > threshold:
            elif abs(float(img[neighbor_x, neighbor_y]) - float(img[seed[0],seed[1]])) > threshold:
                continue
            else:
                seed_list.insert(0, [neighbor_x, neighbor_y])
                is_add[neighbor_x, neighbor_y] = 1
                # mean_value = mean_value/cnt+img[neighbor_x, neighbor_y]/cnt
                # print(mean_value)
                # grow_img[neighbor_x, neighbor_y] = 0
    return grow_img

seeds = [[341,942],[1510,960],[773,931],[2018,949]]
grow_person = region_grow(gray_person, seeds, 4)
grow_person = 255-grow_person
cv_show('grow_person',grow_person)

open_grow_person=img_morph(grow_person,size=50,method='open')
cv_show('open_grow_person', open_grow_person)

close_grow_person1=img_morph(open_grow_person,size=200,method='close')
cv_show('close_grow_person1', close_grow_person1)

segmented_region_person = cv2.bitwise_and(raw_person,raw_person,mask= close_grow_person1)
cv_show('segmented_region_person',segmented_region_person)
cv2.imwrite('results/person/segmented_region_person.jpg',segmented_region_person)

更多详细代码发布在https://github.com/JeremyChou28/digital_image_processing/tree/main/project4

  • 18
    点赞
  • 38
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
Python 是一种非常强大的编程语言,在图像处理方面也有很多优秀的库可以使用,如 Pillow。Pillow 提供了一系列图像处理的函数,包括批量切割图像。下面讲解一下如何使用 Pillow 实现 Python 批量图片切割。 首先,需要安装 Pillow 库。可以使用 pip 安装,命令如下: ``` pip install pillow ``` 接着,我们创建一个 Python 文件,导入必要的库,并设置好切割图片的参数,包括切割后图像的大小、切割的起始和结束位置等。 ``` from PIL import Image # 切割后图像的宽度和高度 size = (224, 224) # 切割的起始和结束位置 left = 0 top = 0 right = 224 bottom = 224 # 批量切割的文件夹路径 dirpath = 'path/to/images/' ``` 定义好切割参数后,我们需要遍历指定文件夹中的所有图像文件,并对它们进行切割。使用 `os` 库的 `listdir()` 函数可以获取文件夹中的所有文件名,然后使用 Pillow 库的 `crop()` 函数对每个文件进行切割。 ``` import os # 遍历文件夹中的所有图像文件 for filename in os.listdir(dirpath): if filename.endswith('.jpg') or filename.endswith('.png'): # 打开图像文件 img = Image.open(os.path.join(dirpath, filename)) # 切割图像 cropped_img = img.crop((left, top, right, bottom)) # 调整图像大小 resized_img = cropped_img.resize(size) # 保存切割后的图像 resized_img.save(os.path.join(dirpath, 'cropped_' + filename)) ``` 最后,运行 Python 文件即可批量切割指定文件夹中的所有图像文件。切割后的图像会保存在原文件夹中,并以 `cropped_` 开头的文件名命名。如有需要,还可以对代码进行修改以适应不同的需求。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

傻fufu滴人儿~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值