3 个基于 DeepSeek 的超实用项目【建议收藏】

1. DeepSeek 网页助手:浏览器的 “超级外挂”

github: https://github.com/browser-use/browser-use

咱平时工作,是不是经常在网页上做一些重复又繁琐的事儿?像填表单、商品比价、查看运营数据,虽说不难,可特别费时间。给大家安利一款最近超火的开源工具 ——Browser - use。它就像是给 AI 安了双灵活的手,能直接操控浏览器,不管多复杂的网页自动化操作都不在话下!

Video to GIF Converter (6)

它的厉害之处在于,不需要你是技术大神,只要把任务简单描述一下,它就能自动执行。不管是对比不同模型的价格、在线购物自动结账,还是根据简历自动投合适的职位,这些复杂任务都能轻松搞定。而且部署超简单,几步就能搞定,还支持 DeepSeek R1、OpenAI 等多种大模型。要是你想从重复劳动里解脱出来,让 AI 帮你搞定繁琐的网页操作,这款工具必须试试!

2. DeepSeek 赚钱利器:故事视频一键生成器

github: https://github.com/alecm20/story-flicks

当下短视频火得一塌糊涂,儿童故事类视频更是热门中的热门,动不动就几十万、上百万的播放量,哪个自媒体人看了不心动?今天给大家介绍一个堪称 “赚钱神器” 的开源项目 ——Story - Flicks。它借助 DeepSeek 等 AI 模型的强大能力,把故事视频创作的门槛降到了谷底。

img

只要输入故事主题,短短几分钟,就能生成一个包含精美图片、连贯内容和专业配音的完整故事视频,内容产出效率直接起飞!它还有语言和声音定制功能,可以根据不同需求选择视频语言和声音风格,而且生成后能直接在页面实时预览效果,都不用额外的播放器,操作简单到飞起。有了它,打造儿童内容账号积累粉丝,或者结合热点快速制作应景故事抢占流量,都变得轻轻松松!

3. DeepSeek 文档助手:文档管理的智能管家

github: https://github.com/clusterzx/paperless-ai

工作里的文档越来越多,整理、分类、检索这些事儿简直让人头秃,大把时间浪费在找文件和组织文件上,又单调又耗时。别愁啦,今天给大家分享的开源工具 Paperless - AI,给 Paperless - ngx 开源文档管理系统注入了 AI 的强大力量。

img

它就像给文档管理系统请了个不知疲倦的智能助手,能自动扫描新文件、提取关键信息、分配标签、识别文档类型,甚至还能自动归类到对应的人或组织。

img

更绝的是,它还有个简单好用的聊天功能,有关于文档的问题,直接问 AI,马上就能得到答案,再也不用一页页翻文件了。它还支持 OpenAI、DeepSeek、Ollama 等多种主流大模型,通过 Docker 一键就能部署,配置简单,上手超容易。要是你正被大量文档管理折磨,或者想要一个更智能高效的文件组织系统,这款结合多种 AI 能力的文档助手可别错过!

我的DeepSeek部署资料已打包好(自取↓)
https://pan.quark.cn/s/7e0fa45596e4

但如果你想知道这个工具为什么能“听懂人话”、写出代码 甚至预测市场趋势——答案就藏在大模型技术里!

❗️为什么你必须了解大模型?

1️⃣ 薪资爆炸:应届大模型工程师年薪40万起步,懂“Prompt调教”的带货主播收入翻3倍

2️⃣ 行业重构:金融、医疗、教育正在被AI重塑,不用大模型的公司3年内必淘汰

3️⃣ 零门槛上车:90%的进阶技巧不需写代码!会说话就能指挥AI

(附深度求索BOSS招聘信息)
在这里插入图片描述

⚠️警惕:当同事用DeepSeek 3小时干完你3天的工作时,淘汰倒计时就开始了。

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?老师啊,我自学没有方向怎么办?老师,这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!当然这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!
在这里插入图片描述

### 基于 DeepSeek 技术的应用和案例 #### 深度解析 DeepSeek 核心技术及其应用价值 DeepSeek 提供了一套全面的核心技术和解决方案,旨在提升企业内部办公效率并推动业务流程自动化。通过集成先进的自然语言处理能力以及强大的机器学习算法,DeepSeek 能够帮助企业实现智能化转型。具体而言,上午的课程涵盖了 DeepSeek 的核心战略和技术体系[^1]。 #### 构建 RAG 系统的实际操作指导 为了更好地理解如何利用 DeepSeek 进行实际项目开发,《基于 DeepSeek 构建 RAG 系统综合指南》提供了一个详细的实践教程。这份文档不仅解释了理论概念,还包含了具体的 Python 实现代码片段,使得开发者可以快速上手创建自己的应用程序。以下是构建简单检索增强生成 (Retrieval-Augmented Generation, RAG) 系统的一个简化版本: ```python from transformers import RagTokenizer, RagSequenceForGeneration def initialize_rag_model(): tokenizer = RagTokenizer.from_pretrained("facebook/rag-tokenizer-base") model = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-base") return tokenizer, model tokenizer, model = initialize_rag_model() context_documents = ["Document text here."] # Replace with actual document texts. query = "What is the capital of France?" input_dict = tokenizer.prepare_seq2seq_batch(src_texts=[query], tgt_texts=context_documents, return_tensors="pt") outputs = model.generate(input_ids=input_dict["input_ids"], context_input_ids=input_dict["context_input_ids"]) generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True) print(generated_text) ``` 这段代码展示了如何加载预训练好的 RAG 模型,并使用它来执行问答任务。用户可以根据需求调整 `context_documents` 和查询字符串 `query` 来适应不同的应用场景[^2]。 #### 行业特定的成功故事——医药行业的变革者 在国内某大型制药公司中,DeepSeek 成功实现了从研究到生产的全流程优化。借助 DeepSeek 开源平台的强大功能,该公司能够加速药物研发周期、提高临床试验管理精度,并改善患者护理质量。这些改进措施显著降低了成本结构,提高了市场竞争力。此外,普通员工也可以参与到 AI 驱动的工作流当中,享受由新技术带来的便利性和高效性[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值