解锁大模型新能力:Agentic RAG技术解析,从传统RAG到智能代理的跃迁(建议收藏)

Agentic RAG是传统RAG技术的进阶形态,通过引入自主决策能力,使系统能像智能代理一样主动规划、动态调整策略并调用工具完成复杂任务。它具备任务规划、动态决策和工具调用三大核心能力,采用四层架构实现"感知-决策-执行-反馈"闭环。这一技术突破了传统RAG的应用边界,使其从问答工具升级为能自主解决复杂问题的智能助手,已在企业报告生成、智能客服等场景落地。

一、Agentic RAG介绍

Agentic RAG(Agentic Retrieval-Augmented Generation,具备代理能力的检索增强生成)是传统 RAG(检索增强生成)技术的进阶形态,核心是在 “检索 - 生成” 流程中引入自主决策能力(Agentic),让系统能像 “智能代理” 一样,根据任务目标主动规划、动态调整策略,并调用工具完成复杂任务,而不仅是被动执行 “检索→生成” 的固定流程。

二、与传统 RAG 的核心区别

传统 RAG 的逻辑相对固定:用户输入查询→系统检索相关文档→将文档片段与查询拼接后输入大模型→生成回答。

Agentic RAG :在以上基础上增加了 “自主代理” 层 ,具备目标拆解、动态决策、工具调用、自我评估等 “类人思维” 能力,能处理需要多步骤协作的复杂任务(而非简单的 “输入 - 检索 - 输出” 闭环)。

Agentic RAG具备三大核心能力:

  1. 任务规划:将复杂问题拆解为子步骤(如 “分析某公司财报并生成对比报告”→拆解为 “检索公司近 3 年财报→提取关键数据→对比行业均值→生成结论”)。
  2. 动态决策:根据中间结果调整策略(如检索到的数据不完整时,主动扩大检索范围;生成内容不符合格式时,自动修正输出)。
  3. 工具调用:自主调用外部工具(如计算器、数据库查询接口、图像解析工具等)弥补自身能力局限(如处理复杂计算、多模态数据)。

三、核心架构(四层结构)

Agentic RAG 的架构可拆解为四个核心模块,形成 “感知 - 决策 - 执行 - 反馈” 的闭环:

  1. 用户交互层
  • 接收用户输入(文本、图像、语音等多模态查询),理解任务目标(如 “生成带数据的市场报告”“排查设备故障”)。
  • 支持多轮对话,记录上下文语境(如用户历史需求、中间结果反馈)。
2. Agent 核心层(决策中枢)

这是 Agentic RAG 的 “大脑”,负责任务规划、逻辑推理、动态决策

  • 任务拆解:将复杂目标分解为可执行的子步骤。例如,“分析某产品季度销售数据” 拆解为:
    ① 检索该产品近 3 个月的销售原始数据;
    ② 调用数据分析工具计算环比 / 同比增长率;
    ③ 对比同品类竞品数据;
    ④ 生成带结论的分析报告。
  • 策略调整:根据子步骤结果动态优化路径。例如,若检索到的销售数据不完整,自动扩大检索范围(如从内部数据库扩展到经销商报表);若分析工具返回异常值,主动校验数据来源。
  • 工具选择:根据子任务需求调用适配工具(如检索工具、计算器、图像识别 API、代码解释器等)。
3. 检索增强层
  • 功能:负责从外部知识库中精准获取支撑任务的信息,是 Agent 的 “信息源”。
  • 能力:支持多模态检索(文本、图像、音频、视频)、跨源检索(数据库、本地文件、网页 API)、动态检索(根据 Agent 指令调整检索条件,如关键词、时间范围)。
  • 技术支撑:向量数据库(如 Milvus、Pinecone)存储多模态向量,跨模态模型(如 CLIP)实现语义对齐,混合检索策略(向量 + 关键词)提升召回精度。
4. 工具与执行层
  • 功能:执行 Agent 的具体指令,扩展系统能力边界(弥补大模型本身的缺陷,如计算能力、实时数据访问)。
  • 常见工具类型:
  • 数据处理工具:Python 代码解释器(处理 Excel、绘图)、SPSS(统计分析);
  • 外部 API:天气查询、股票数据、电商平台接口;
  • 多模态工具:OCR(图像转文本)、Whisper(音频转文本)、DALL・E(文本生成图像);
  • 流程工具:邮件发送、文件导出(PDF/Excel)、数据库查询。

三、关键技术支撑

  • Agent 框架:如 LangChain、AutoGPT、MetaGPT ,Langgraph等,提供任务规划、工具调用、记忆管理(短期上下文 + 长期知识)能力。
  • 大模型:作为 Agent 的 “大脑”,负责逻辑推理、决策判断(如 GPT-4、Claude、LLaMA 2 等)。
  • 检索增强:保留传统 RAG 的检索能力,确保生成内容基于可靠数据源(向量数据库 + 多模态检索技术)。
  • 工具生态:连接 API、数据库、代码解释器、多模态处理工具等,扩展 Agent 的能力边界。

四、挑战与局限

  1. 效率问题:多步骤规划和工具调用会增加响应时间,需优化检索速度和任务拆解效率。
  2. 错误累积风险:某一子步骤出错(如检索到错误数据)可能导致后续结果偏差,需强化自我校验能力。
  3. 复杂工具适配:部分专业工具(如 SPSS、行业数据库)的接口标准化难度高,影响 Agent 调用效率。
  4. 成本问题:大模型推理 + 多工具调用的计算成本高于传统 RAG,需平衡性能与成本。

总结

Agentic RAG 通过将 “检索增强” 的信息可靠性与 “Agent” 的自主决策能力结合,突破了传统 RAG 的应用边界,使其从 “问答工具” 升级为 “能自主解决复杂问题的智能助手”。它的核心价值在于 “用机器的逻辑处理人类的复杂任务”,目前已在企业报告生成、智能客服、科研辅助等场景落地,并将随着大模型与 Agent 技术的成熟向更多领域渗透。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线科技企业深耕十二载,见证过太多因技术卡位而跃迁的案例。那些率先拥抱 AI 的同事,早已在效率与薪资上形成代际优势,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在大模型的学习中的很多困惑。我们整理出这套 AI 大模型突围资料包

  • ✅ 从零到一的 AI 学习路径图
  • ✅ 大模型调优实战手册(附医疗/金融等大厂真实案例)
  • ✅ 百度/阿里专家闭门录播课
  • ✅ 大模型当下最新行业报告
  • ✅ 真实大厂面试真题
  • ✅ 2025 最新岗位需求图谱

所有资料 ⚡️ ,朋友们如果有需要 《AI大模型入门+进阶学习资源包》下方扫码获取~
在这里插入图片描述

① 全套AI大模型应用开发视频教程

(包含提示工程、RAG、LangChain、Agent、模型微调与部署、DeepSeek等技术点)
在这里插入图片描述

② 大模型系统化学习路线

作为学习AI大模型技术的新手,方向至关重要。 正确的学习路线可以为你节省时间,少走弯路;方向不对,努力白费。这里我给大家准备了一份最科学最系统的学习成长路线图和学习规划,带你从零基础入门到精通!
在这里插入图片描述

③ 大模型学习书籍&文档

学习AI大模型离不开书籍文档,我精选了一系列大模型技术的书籍和学习文档(电子版),它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。
在这里插入图片描述

④ AI大模型最新行业报告

2025最新行业报告,针对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
在这里插入图片描述

⑤ 大模型项目实战&配套源码

学以致用,在项目实战中检验和巩固你所学到的知识,同时为你找工作就业和职业发展打下坚实的基础。
在这里插入图片描述

⑥ 大模型大厂面试真题

面试不仅是技术的较量,更需要充分的准备。在你已经掌握了大模型技术之后,就需要开始准备面试,我精心整理了一份大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余

图片

以上资料如何领取?

在这里插入图片描述

为什么大家都在学大模型?

最近科技巨头英特尔宣布裁员2万人,传统岗位不断缩减,但AI相关技术岗疯狂扩招,有3-5年经验,大厂薪资就能给到50K*20薪!

图片

不出1年,“有AI项目经验”将成为投递简历的门槛。

风口之下,与其像“温水煮青蛙”一样坐等被行业淘汰,不如先人一步,掌握AI大模型原理+应用技术+项目实操经验,“顺风”翻盘!
在这里插入图片描述
在这里插入图片描述

这些资料真的有用吗?

这份资料由我和鲁为民博士(北京清华大学学士和美国加州理工学院博士)共同整理,现任上海殷泊信息科技CEO,其创立的MoPaaS云平台获Forrester全球’强劲表现者’认证,服务航天科工、国家电网等1000+企业,以第一作者在IEEE Transactions发表论文50+篇,获NASA JPL火星探测系统强化学习专利等35项中美专利。本套AI大模型课程由清华大学-加州理工双料博士、吴文俊人工智能奖得主鲁为民教授领衔研发。

资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的技术人员,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。
在这里插入图片描述
在这里插入图片描述

以上全套大模型资料如何领取?

在这里插入图片描述

### 传统 RAGAgentic RAG 的代表工具 #### 传统 RAG 的代表工具 传统 RAG 技术主要依赖于信息检索与生成的结合,适用于较为简单的场景。以下是一些支持传统 RAG 的大语言模型工具: 1. **FAISS (Facebook AI Similarity Search)** FAISS 是一个高效的向量检索库,广泛用于构建 RAG 模型中的检索组件。它能够快速地在大规模数据集中找到与查询最相似的向量,从而实现高效的外部知识检索[^1]。 2. **DPR (Dense Passage Retriever)** DPR 是 Facebook AI 提出的一种基于深度学习的密集段落检索方法,专门用于 RAG 模型。它通过训练一个编码器来将查询和文档映射到同一个向量空间中,从而实现高效的检索[^1]。 3. **BM25** BM25 是一种经典的倒排索引检索算法,广泛应用于信息检索领域。尽管它是基于关键词匹配的传统方法,但在某些 RAG 应用中仍然被用作检索组件,尤其是在资源有限的情况下[^2]。 4. **Elasticsearch** Elasticsearch 是一个分布式搜索和分析引擎,支持高效的文本检索。它可以作为 RAG 模型中的检索组件,尤其是在需要处理大量非结构化文本数据的场景中[^2]。 #### Agentic RAG 的代表工具 Agentic RAG 通过引入智能体,增强了系统的自主决策和动态交互能力,适用于更复杂和多变的用户需求。以下是一些支持 Agentic RAG 的大语言模型工具: 1. **LangChain** LangChain 是一个专注于构建语言模型应用的框架,支持 Agentic RAG 的实现。它提供了丰富的工具和模块,允许开发者构建具有自主决策能力的智能体,从而实现更复杂的交互逻辑[^3]。 2. **AutoGPT** AutoGPT 是一个基于 GPT 的开源项目,旨在构建能够自主完成任务的智能体。它通过将 GPT 模型与外部工具集成,实现了 Agentic RAG 的功能,能够根据用户需求动态规划和执行任务。 3. **Hugging Face Transformers** Hugging Face 的 Transformers 库支持多种先进的语言模型,并且可以通过自定义模块实现 Agentic RAG。开发者可以利用该库构建具有智能决策能力的系统,结合检索和生成的优势[^4]。 4. **LlamaIndex (原 GPT Index)** LlamaIndex 是一个用于构建基于大语言模型的应用程序的工具集,支持 Agentic RAG 的实现。它提供了灵活的接口,允许开发者将外部数据源与语言模型结合,并通过智能体进行动态交互[^4]。 5. **Microsoft Semantic Kernel** Microsoft 的 Semantic Kernel 是一个轻量级 SDK,支持将自然语言 AI传统代码结合。它可以通过插件机制集成外部数据源和工具,从而实现 Agentic RAG 的功能,适用于构建复杂的 AI 应用[^5]。 ### 代码示例 以下是一个简单的 Python 示例,展示如何使用 FAISS 和 DPR 实现传统 RAG: ```python from transformers import DPRTokenizer, DPRQuestionEncoder, DPRContextEncoder import faiss import numpy as np # 加载 DPR 模型和分词器 question_tokenizer = DPRTokenizer.from_pretrained("facebook/dpr-question_encoder-single-nq-base") question_encoder = DPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base") context_tokenizer = DPRTokenizer.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base") context_encoder = DPRContextEncoder.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base") # 假设我们有一组文档 documents = [ "Python 是一种广泛使用的高级编程语言。", "RAG 是一种结合检索和生成的自然语言处理技术。", "Agentic RAG 引入了智能体,增强了系统的自主决策能力。" ] # 对文档进行编码 context_inputs = context_tokenizer(documents, return_tensors="pt", padding=True, truncation=True) context_embeddings = context_encoder(**context_inputs).pooler_output.detach().numpy() # 构建 FAISS 索引 dimension = context_embeddings.shape[1] index = faiss.IndexFlatL2(dimension) index.add(context_embeddings) # 用户查询 query = "什么是 RAG 技术?" # 对查询进行编码 question_inputs = question_tokenizer(query, return_tensors="pt") question_embedding = question_encoder(**question_inputs).pooler_output.detach().numpy() # 检索最相关的文档 distances, indices = index.search(question_embedding, k=1) retrieved_document = documents[indices[0][0]] print("检索到的文档:", retrieved_document) ``` ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值