【Lintcode】465. Kth Smallest Sum In Two Sorted Arrays

题目地址:

https://www.lintcode.com/problem/kth-smallest-sum-in-two-sorted-arrays/description

给定两个递增数组 A A A B B B,从两个数组各自挑一个数求和,问这些和里排名第 k k k的是多少(大小一样的话,有多少个就占多少个排名。比如和的可能取值是 ( 0 , 1 , 1 , 2 , . . . ) (0,1,1,2,...) (0,1,1,2,...),那么排名第 3 3 3的和就是 1 1 1)。

可以将 A A A B B B张成一个和矩阵,具体来说,如果 A = [ a 0 , a 1 , . . . , a n − 1 ] A=[a_0,a_1,...,a_{n-1}] A=[a0,a1,...,an1] B = [ b 0 , b 1 , . . . , b m − 1 ] B=[b_0,b_1,...,b_{m-1}] B=[b0,b1,...,bm1],那么它们张成的矩阵就是: [ a 0 + b 0 a 1 + b 0 . . . a n − 1 + b 0 a 0 + b 1 a 1 + b 1 . . . a n − 1 + b 1 a 0 + b 2 a 1 + b 2 . . . a n − 1 + b 2 . . . . . . . . . . . . a 0 + b m − 1 a 1 + b m − 1 . . . a n − 1 + b m − 1 ] \left[ \begin{matrix}a_0+b_0 & a_1+b_0&...&a_{n-1}+b_0\\ a_0+b_1 & a_1+b_1&...&a_{n-1}+b_1\\ a_0+b_2 & a_1+b_2&...&a_{n-1}+b_2\\...&...&...&...\\ a_0+b_{m-1} & a_1+b_{m-1}&...&a_{n-1}+b_{m-1}\end{matrix}\right] a0+b0a0+b1a0+b2...a0+bm1a1+b0a1+b1a1+b2...a1+bm1...............an1+b0an1+b1an1+b2...an1+bm1接下来,就可以用https://blog.csdn.net/qq_46105170/article/details/105592678里面的方法来做了。

法1:二分答案。很显然答案的范围就是 [ A [ 0 ] + B [ 0 ] , A [ n − 1 ] + B [ n − 1 ] ] [A[0]+B[0],A[n-1]+B[n-1]] [A[0]+B[0],A[n1]+B[n1]],我们需要求出某个数 x x x,它是使得小于等于 x x x的和的个数大于等于 k k k的最小数。显然这样的 x x x就是所求的答案。而小于等于 x x x的和的个数,可以参考给的连接的那道题。代码如下:

public class Solution {
    /**
     * @param A: an integer arrays sorted in ascending order
     * @param B: an integer arrays sorted in ascending order
     * @param k: An integer
     * @return: An integer
     */
    public int kthSmallestSum(int[] A, int[] B, int k) {
        // write your code here
        int l = A[0] + B[0], r = A[A.length - 1] + B[B.length - 1];
        while (l < r) {
            int m = l + (r - l >> 1);
            if (countLessEq(A, B, m) >= k) {
                r = m;
            } else {
                l = m + 1;
            }
        }
        
        return l;
    }
    
    private int countLessEq(int[] A, int[] B, int target) {
        int count = 0;
        int x = B.length - 1, y = 0;
        while (x >= 0 && y < A.length) {
            if (A[y] + B[x] <= target) {
                count += x + 1;
                y++;
            } else {
                x--;
            }
        }
        
        return count;
    }
}

时间复杂度 O ( ( n + m ) log ⁡ ( A [ n − 1 ] + B [ m − 1 ] − A [ 0 ] − B [ 0 ] ) ) O((n+m)\log (A[n-1]+B[m-1]-A[0]-B[0])) O((n+m)log(A[n1]+B[m1]A[0]B[0])),空间 O ( 1 ) O(1) O(1)

法2:多路归并。思路参考上面的链接。代码如下:

import java.util.PriorityQueue;

public class Solution {
    
    class Pair {
        int x, y, val;
    
        public Pair(int x, int y, int val) {
            this.x = x;
            this.y = y;
            this.val = val;
        }
    }
    
    /**
     * @param A: an integer arrays sorted in ascending order
     * @param B: an integer arrays sorted in ascending order
     * @param k: An integer
     * @return: An integer
     */
    public int kthSmallestSum(int[] A, int[] B, int k) {
        // write your code here
        PriorityQueue<Pair> minHeap = new PriorityQueue<>((p1, p2) -> Integer.compare(p1.val, p2.val));
        for (int i = 0; i < B.length; i++) {
            minHeap.offer(new Pair(i, 0, B[i] + A[0]));
        }
    
        for (int i = 1; i <= k - 1; i++) {
            Pair cur = minHeap.poll();
            if (cur.y < A.length - 1) {
                minHeap.offer(new Pair(cur.x, cur.y + 1, B[cur.x] + A[cur.y + 1]));
            }
        }
        
        return minHeap.peek().val;
    }
}

时间复杂度 O ( k log ⁡ m ) O(k\log m) O(klogm),空间 O ( m ) O(m) O(m)

注解:由复杂度可以知道,我们要把较短的数组视为 B B B,复杂度会比较低。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值