【Lintcode】440. Backpack III

题目地址:

https://www.lintcode.com/problem/backpack-iii/description

给定一个数组 A A A,表示每个物品的体积,再给定一个数组 V V V,表示每个物品的价值。有一个容积为 m m m的背包,问可以加入背包的最大价值是多少。每个物品可以取无限次。

思路是动态规划。首先,为了选法表达的唯一性,我们将每种选法按照物品在数组 A A A中的下标排序。例如,如果 A = [ 2 , 3 , 5 , 7 ] A=[2,3,5,7] A=[2,3,5,7],那么第 0 0 0个物品选 2 2 2个,第 1 1 1 2 2 2个物品各选一个,这种选法就可以用序列 ( 0 , 0 , 1 , 2 ) (0,0,1,2) (0,0,1,2)表示,并且我们只接受这种写法,不接受类似于 ( 0 , 1 , 0 , 2 ) (0,1,0,2) (0,1,0,2)这种写法,因为我们要保证所选的物品按照其在 A A A中的下标是排序好的。设 f [ i ] [ j ] f[i][j] f[i][j]表示 A [ 0 : i ] A[0:i] A[0:i]中选物品,并且体积不超过 j j j的时候,所能达到的最大价值。首先, f [ 0 ] [ j ] = j / A [ 0 ] ∗ V [ 0 ] f[0][j]=j/A[0]*V[0] f[0][j]=j/A[0]V[0]考虑一般情况下的递推式。 f [ i ] [ j ] f[i][j] f[i][j]的所有方案可以按照其序列的最后一个数是几来分类。如果最后一个数恰好是 i i i,也就是方案里选了 A [ i ] A[i] A[i],那么此时最大价值是 f [ i ] [ j − A [ i ] ] + V [ i ] f[i][j-A[i]]+V[i] f[i][jA[i]]+V[i];如果最后一个数不是 i i i,也就是方案里不选 A [ i ] A[i] A[i],那就相当于是从 A [ 0 : i − 1 ] A[0:i-1] A[0:i1]里选物品,则最大价值是 f [ i − 1 ] [ j ] f[i-1][j] f[i1][j],所以 f [ i ] [ j ] = max ⁡ { f [ i − 1 ] [ j ] , f [ i ] [ j − A [ i ] ] + V [ i ] } f[i][j]=\max\{f[i-1][j],f[i][j-A[i]]+V[i]\} f[i][j]=max{f[i1][j],f[i][jA[i]]+V[i]}这里注意,对于每一个 i i i,我们按照 j j j必须从小到大更新,因为 f [ i ] [ j ] f[i][j] f[i][j]的取值是依赖 f [ i ] [ j − A [ i ] ] f[i][j-A[i]] f[i][jA[i]]的。代码如下:

public class Solution {
    /**
     * @param A: an integer array
     * @param V: an integer array
     * @param m: An integer
     * @return: an array
     */
    public int backPackIII(int[] A, int[] V, int m) {
        // write your code here
        if (A == null || A.length == 0 || V == null || V.length == 0) {
            return 0;
        }
        
        int[][] dp = new int[A.length][m + 1];
        for (int i = 0; i * A[0] <= m; i++) {
            dp[0][i * A[0]] = i * V[0];
        }
    
        for (int i = 1; i < A.length; i++) {
        	// j递增更新
            for (int j = 0; j <= m; j++) {
                dp[i][j] = dp[i - 1][j];
                if (j - A[i] >= 0) {
                    dp[i][j] = Math.max(dp[i][j], dp[i][j - A[i]] + V[i]);
                }
            }
        }
        
        return dp[A.length - 1][m];
    }
}

时空复杂度 O ( l A m ) O(l_Am) O(lAm)

考虑空间优化。我们发现 f [ i ] [ j ] f[i][j] f[i][j]的取值只取决于其上方一行和其左方的值。所以算出 f [ i ] f[i] f[i]这一行的时候可以直接覆盖到原数组上。但需要注意,这里每一行需要从左向右算,因为 f [ i ] [ j ] f[i][j] f[i][j]要依赖其左边已经算好的数值。代码如下:

public class Solution {
    /**
     * @param A: an integer array
     * @param V: an integer array
     * @param m: An integer
     * @return: an array
     */
    public int backPackIII(int[] A, int[] V, int m) {
        // write your code here
        if (A == null || A.length == 0 || V == null || V.length == 0) {
            return 0;
        }
        
        int[] dp = new int[m + 1];
        for (int i = 0; i * A[0] <= m; i++) {
            dp[i * A[0]] = i * V[0];
        }
        
        for (int i = 1; i < A.length; i++) {
        	// j从小到大更新
            for (int j = 0; j <= m; j++) {
                if (j - A[i] >= 0) {
                    dp[j] = Math.max(dp[j], dp[j - A[i]] + V[i]);
                }
            }
        }
        
        return dp[m];
    }
}

时间复杂度不变,空间 O ( m ) O(m) O(m)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值