题目地址:
https://www.acwing.com/problem/content/150/
给定 n n n个数, a 1 , . . . , a n a_1,...,a_n a1,...,an,每次要合并两个数成为一个新数,代价就是它们的和。问把所有数两个两个合并最终成为一个数的最小总代价是多少。
输入格式:
输入包括两行,第一行是一个整数
n
n
n,表示果子的种类数。第二行包含
n
n
n个整数,用空格分隔,第
i
i
i个整数
a
i
a_i
ai是第
i
i
i种果子的数目。
输出格式:
输出包括一行,这一行只包含一个整数,也就是最小代价。
数据范围:
1
≤
n
≤
10000
1≤n≤10000
1≤n≤10000
1
≤
a
i
≤
20000
1≤ai≤20000
1≤ai≤20000
输入数据保证答案小于
2
31
2^{31}
231。
这其实是Huffman树的问题。可以将这 n n n个数构造为一棵二叉树,使得这些数都是叶子节点的权值,并且每个节点要么是叶子,要么有两个儿子。那么总代价就是所有叶子的权值乘以其到树根的路径长度之总和。我们下面证明,每一步合并都去合并最小的两个数,这样的方案是最优的。
算法正确性证明:
数学归纳法。只有一个或两个数的时候显然算法正确。设对于
k
k
k个数算法也正确,考虑有
k
+
1
k+1
k+1个数的时候。首先可以证明,对于任意最优解,最小数一定在最深的那一层,如果不然,就可以将最小数与最深的那一层的某个比它大的数交换,这样得到的总代价是更小的(因为权值乘以深度变小了),而显然在最深的层的节点是先合并的。而先合并完两个最小数之后,问题就转为
k
k
k个数的情形了,接着由归纳假设,算法对于
k
k
k个数的时候正确,再由数学归纳法,算法对于任意个数都正确。
算法可以用最小堆实现,代码如下:
#include <iostream>
#include <queue>
using namespace std;
int main() {
int n;
cin >> n;
priority_queue<int, vector<int>, greater<int> > min_heap;
for (int i = 0; i < n; i++) {
int a;
cin >> a;
min_heap.push(a);
}
int res = 0;
while (min_heap.size() > 1) {
int x = min_heap.top(); min_heap.pop();
int y = min_heap.top(); min_heap.pop();
res += x + y;
min_heap.push(x + y);
}
cout << res << endl;
return 0;
}
时间复杂度 O ( n log n ) O(n\log n) O(nlogn),空间 O ( n ) O(n) O(n)。