【ACWing】148. 合并果子(配数学证明)

题目地址:

https://www.acwing.com/problem/content/150/

给定 n n n个数, a 1 , . . . , a n a_1,...,a_n a1,...,an,每次要合并两个数成为一个新数,代价就是它们的和。问把所有数两个两个合并最终成为一个数的最小总代价是多少。

输入格式:
输入包括两行,第一行是一个整数 n n n,表示果子的种类数。第二行包含 n n n个整数,用空格分隔,第 i i i个整数 a i a_i ai是第 i i i种果子的数目。

输出格式:
输出包括一行,这一行只包含一个整数,也就是最小代价。

数据范围:
1 ≤ n ≤ 10000 1≤n≤10000 1n10000
1 ≤ a i ≤ 20000 1≤ai≤20000 1ai20000
输入数据保证答案小于 2 31 2^{31} 231

这其实是Huffman树的问题。可以将这 n n n个数构造为一棵二叉树,使得这些数都是叶子节点的权值,并且每个节点要么是叶子,要么有两个儿子。那么总代价就是所有叶子的权值乘以其到树根的路径长度之总和。我们下面证明,每一步合并都去合并最小的两个数,这样的方案是最优的。

算法正确性证明:
数学归纳法。只有一个或两个数的时候显然算法正确。设对于 k k k个数算法也正确,考虑有 k + 1 k+1 k+1个数的时候。首先可以证明,对于任意最优解,最小数一定在最深的那一层,如果不然,就可以将最小数与最深的那一层的某个比它大的数交换,这样得到的总代价是更小的(因为权值乘以深度变小了),而显然在最深的层的节点是先合并的。而先合并完两个最小数之后,问题就转为 k k k个数的情形了,接着由归纳假设,算法对于 k k k个数的时候正确,再由数学归纳法,算法对于任意个数都正确。

算法可以用最小堆实现,代码如下:

#include <iostream>
#include <queue>
using namespace std;

int main() {
    int n;
    cin >> n;

    priority_queue<int, vector<int>, greater<int> > min_heap;
    
    for (int i = 0; i < n; i++) {
        int a;
        cin >> a;
        min_heap.push(a);
    }

    int res = 0;
    while (min_heap.size() > 1) {
        int x = min_heap.top(); min_heap.pop();
        int y = min_heap.top(); min_heap.pop();
        res += x + y;
        min_heap.push(x + y);
    }

    cout << res << endl;

    return 0;
}

时间复杂度 O ( n log ⁡ n ) O(n\log n) O(nlogn),空间 O ( n ) O(n) O(n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值