【洛谷】P6033 合并果子 加强版(配数学证明)

该博客讨论了一道编程题目,涉及合并果子以最小化体力耗费的问题。博主给出了利用双队列实现O(n)复杂度的解决方案,通过保持队列单调性来找到每次合并的最小代价。代码示例展示了如何快速读入数据并进行计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目地址:

https://www.luogu.com.cn/problem/P6033

题目背景:
本题除【数据范围】外与P1090完全一致。

题目描述:
在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过 ( n − 1 ) (n - 1) (n1)次合并之后, 就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为 1 1 1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。例如有 3 3 3堆果子,数目依次为 1 ,   2 ,   9 1,~2,~9 1, 2, 9。可以先将 1 1 1 2 2 2堆合并,新堆数目为 3 3 3,耗费体力为 3 3 3。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为 12 12 12,耗费体力为 12 12 12。所以多多总共耗费体力为 3 + 12 = 15 3+12=15 3+12=15。可以证明 15 15 15为最小的体力耗费值。

输入格式:
输入的第一行是一个整数 n n n,代表果子的堆数。
输入的第二行有 n n n个用空格隔开的整数,第 i i i个整数代表第 i i i堆果子的个数 a i a_i ai

输出格式:
输出一行一个整数,表示最小耗费的体力值。

数据范围:
本题采用多测试点捆绑测试,共有四个子任务。
Subtask 1(10 points): 1 ≤ n ≤ 8 1 \leq n \leq 8 1n8
Subtask 2(20 points): 1 ≤ n ≤ 1 0 3 1 \leq n \leq 10^3 1n103
Subtask 3(30 points): 1 ≤ n ≤ 1 0 5 1 \leq n \leq 10^5 1n105
Subtask 4(40 points): 1 ≤ n ≤ 1 0 7 1 \leq n \leq 10^7 1n107
对于全部的测试点,保证 1 ≤ a i ≤ 1 0 5 1 \leq a_i \leq 10^5 1ai105

提示:
请注意常数因子对程序效率造成的影响。
请使用类型合适的变量来存储本题的结果。
本题输入规模较大,请注意数据读入对程序效率造成的影响。

数据范围太大,需要用long储存数据,并且需要快读。同时,用最小堆来做时间是 O ( n log ⁡ n ) O(n\log n) O(nlogn)(做法参考https://blog.csdn.net/qq_46105170/article/details/113750503),可以优化到 O ( n ) O(n) O(n)。其实每次要做的操作就是取最小值,这可以用双队列来做,保证两个队列各自都是单调上升的即可。这一点可以这样实现:开两个队列,第一个队列是 a i a_i ai的上升序列,第二个队列一开始为空,每次直接假定两个队列各自单调上升,那么每次取最小值其实就是取队头,取两个最小值加起来直接push到第二个队列后面。稍微证明一下这个的正确性,设当前第一个队列开头的数是 x 1 ≤ x 2 ≤ x 3 ≤ x 4 x_1\le x_2\le x_3\le x_4 x1x2x3x4,第二个队列开头的数是 y 1 ≤ y 2 ≤ y 3 ≤ y 4 y_1\le y_2\le y_3\le y_4 y1y2y3y4,分三种情况:
1、 x 1 + x 2 x_1+x_2 x1+x2被push到队列二后面,那么下次push的时候因为 min ⁡ { x 3 , y 1 } ≥ x 2 \min\{x_3,y_1\}\ge x_2 min{x3,y1}x2,所以再push的数一定大于等于 x 1 + x 2 x_1+x_2 x1+x2,成立;
2、 y 1 + y 2 y_1+y_2 y1+y2被push到队列二后面,理由同上;
3、 x 1 + y 1 x_1+y_1 x1+y1被push到队列二后面,下次如果push的是 y 2 + y 3 y_2+y_3 y2+y3,则 y 2 ≥ y 1 , y 3 ≥ x 2 ≥ x 1 y_2\ge y_1, y_3\ge x_2\ge x_1 y2y1,y3x2x1,成立;如果push的是 x 2 + x 3 x_2+x_3 x2+x3理由一样,剩下的情况显然。

代码如下:

#include <iostream>
using namespace std;

const int M = 1e5 + 10, N = 1e7 + 10;
int n, a[M];
long res;
long q1[N], q2[N];
int hh1, tt1, hh2, tt2;

// 快读
void read(int &x) {
  int si = 1;
  x = 0;
  char c = getchar();
  if (c == '-') si = -1, c = getchar();
  for (; '0' <= c && c <= '9'; c = getchar())
    x = x * 10 + c - '0';
  x *= si;
}

// 两个队列里取队头最小值
long find_min() {
  long x;
  if (hh2 == tt2 || hh1 < tt1 && q1[hh1] < q2[hh2]) x = q1[hh1++];
  else x = q2[hh2++];
  return x;
}

int main() {
  read(n);
  for (int i = 1, x; i <= n; i++) {
    read(x);
    a[x]++;
  }

  for (int i = 1; i < M; i++) while (a[i]) a[i]--, q1[tt1++] = i;
  for (int i = 1; i < n; i++) {
    long x = find_min(), y = find_min();
    res += x + y;
    q2[tt2++] = x + y;
  }

  printf("%ld\n", res);
}

时空复杂度 O ( n ) O(n) O(n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值