【ACWing】1069. 凸多边形的划分

题目地址:

https://www.acwing.com/problem/content/1071/

给定一个具有 N N N个顶点的凸多边形,将顶点从 1 1 1 N N N标号,每个顶点的权值都是一个正整数。将这个凸多边形划分成 N − 2 N−2 N2个互不相交的三角形,对于每个三角形,其三个顶点的权值相乘都可得到一个权值乘积,试求所有三角形的顶点权值乘积之和至少为多少。

输入格式:
第一行包含整数 N N N,表示顶点数量。第二行包含 N N N个整数,依次为顶点 1 1 1至顶点 N N N的权值。

输出格式:
输出仅一行,为所有三角形的顶点权值乘积之和的最小值。

数据范围:
N ≤ 50 N≤50 N50
数据保证所有顶点的权值都小于 1 0 9 10^9 109

三个点的权值乘积可能会达到 1 0 27 10^{27} 1027,所以要用高精度加法、乘法,即用vector来做。思路是动态规划,我们把 1 ∼ N 1\sim N 1N N N N个顶点看成是长 N N N的区间,考虑顶点 1 , N 1,N 1,N和哪个第三顶点组成的三角形,显然这个第三点的选择可以是 2 , 3 , . . . , N − 1 2,3,...,N-1 2,3,...,N1,设选中的是 k k k,选中以后,划分多边形 1 , 2 , . . . , k , 1 1,2,...,k,1 1,2,...,k,1和划分多边形 k , k + 1 , . . . , N , k k,k+1,...,N,k k,k+1,...,N,k是完全独立的,互不影响,而这两个问题是规模更小的问题。设 f [ i ] [ j ] f[i][j] f[i][j]是划分多边形 i , i + 1 , . . . , j − 1 , j i,i+1,...,j-1,j i,i+1,...,j1,j所能得到的最小权值乘积和,那么可以按照 i , j i,j i,j和哪个第三点形成三角形来分类,所以有: f [ i ] [ j ] = min ⁡ i + 1 ≤ k ≤ j − 1 { f [ i ] [ k ] + f [ k ] [ j ] + a [ i ] ∗ a [ j ] ∗ a [ k ] } f[i][j]=\min_{i+1\le k\le j-1}\{f[i][k]+f[k][j]+a[i]*a[j]*a[k]\} f[i][j]=i+1kj1min{f[i][k]+f[k][j]+a[i]a[j]a[k]}区间长度从 3 3 3开始枚举。关于位数,答案肯定不会超过 1 0 27 × 50 10^{27}\times 50 1027×50,可以取 30 30 30位。代码如下:

#include <iostream>
#include <vector>
using namespace std;

const int N = 55;
int n;
int a[N];
vector<long> f[N][N];

// 高精度乘法
vector<long> mul(vector<long> A, long b) {
    vector<long> C;
    if (A.empty()) return C;
    long t = 0;
    for (int i = 0; i < A.size() || t; i++) {
        if (i < A.size()) t += A[i] * b;
        C.push_back(t % 10);
        t /= 10;
    }

    return C;
}

// 高精度加法
vector<long> add(vector<long> A, vector<long> B) {
    if (A.empty()) A.push_back(0);
    else if (B.empty()) B.push_back(0);

    vector<long> C;
    long t = 0;
    for (int i = 0; i < A.size() || i < B.size() || t; i++) {
        if (i < A.size()) t += A[i];
        if (i < B.size()) t += B[i];
        C.push_back(t % 10);
        t /= 10;
    }

    return C;
}

// 高精度比较
int cmp(vector<long> A, vector<long> B) {
    if (A.size() != B.size()) return A.size() > B.size() ? 1 : -1;
    for (int i = A.size() - 1; i >= 0; i--)
        if (A[i] != B[i]) return A[i] > B[i] ? 1 : -1;
    return 0;
}

void printv(vector<long> A) {
    for (int i = A.size() - 1; i >= 0; i--) cout << A[i];
    cout << endl;
}

int main() {
    cin >> n;
    for (int i = 1; i <= n; i++) cin >> a[i];

    for (int len = 3; len <= n; len++)
        for (int l = 1; l + len - 1 <= n; l++) {
            int r = l + len - 1;
            for (int i = 0; i < 30; i++) f[l][r].push_back(0);
            f[l][r].push_back(1);

            for (int k = l + 1; k < r; k++) {
                vector<long> tmp;
                tmp.push_back(1);
                tmp = mul(tmp, a[l]);
                tmp = mul(tmp, a[k]);
                tmp = mul(tmp, a[r]);
                if (len == 3) f[l][r] = tmp;
                else {
                    tmp = add(tmp, f[l][k]);
                    tmp = add(tmp, f[k][r]);
                    if (cmp(tmp, f[l][r]) < 0) f[l][r] = tmp;
                }
            }
        }

    printv(f[1][n]);

    return 0;
}

时间复杂度 O ( n 3 log ⁡ v ) O(n^3\log v) O(n3logv) v v v是最大权值,空间 O ( n 3 + log ⁡ v ) O(n^3+\log v) O(n3+logv)

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值