【Leetcode】673. Number of Longest Increasing Subsequence

题目地址:

https://leetcode.com/problems/number-of-longest-increasing-subsequence/

给定一个长 n n n的数组 A A A,问其最长严格上升子序列的个数。

其实就是动态规划求最优解方案数。设 f [ i ] f[i] f[i]是以 A [ i ] A[i] A[i]为结尾的最长上升子序列的长度, g [ i ] g[i] g[i]是以 A [ i ] A[i] A[i]结尾的长 f [ i ] f[i] f[i]的子序列的个数,那么 f [ i ] = 1 + max ⁡ j < i , A [ j ] < A [ i ] { f [ j ] } f[i]=1+\max_{j<i,A[j]<A[i]}\{f[j]\} f[i]=1+j<i,A[j]<A[i]max{f[j]} g g g可以根据相应情况进行更新。最后看一下哪些 f [ i ] f[i] f[i]等于最长严格上升子序列的长度的,累加它们的 g g g值即可。代码如下:

class Solution {
 public:
  int findNumberOfLIS(vector<int>& a) {
    int n = a.size();
    vector<int> f(n), g(n);
    int max_len = 0;
    for (int i = 0; i < n; i++) {
      f[i] = g[i] = 1;
      for (int j = 0; j < i; j++)
        if (a[j] < a[i]) {
          if (f[j] + 1 > f[i]) {
            f[i] = f[j] + 1;
            g[i] = g[j];
          } else if (f[j] + 1 == f[i])
            g[i] += g[j];
        }

      max_len = max(max_len, f[i]);
    }

    int res = 0;
    for (int i = 0; i < n; i++)
      if (f[i] == max_len) res += g[i];
    return res;
  }
};

时间复杂度 O ( n 2 ) O(n^2) O(n2),空间 O ( n ) O(n) O(n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值