题目地址:
https://leetcode.com/problems/super-pow/
给定一个正整数 a a a,和一个数组 b b b, b b b表示一个很大的正整数(从左向右读),求 a b m o d 1337 a^b\mod 1337 abmod1337。
1337 = 7 × 191 1337=7\times 191 1337=7×191,考虑欧拉函数 ϕ ( 1337 ) = 1337 ( 1 − 1 7 ) ( 1 − 1 191 ) = 1140 \phi(1337)=1337(1-\frac{1}{7})(1-\frac{1}{191})=1140 ϕ(1337)=1337(1−71)(1−1911)=1140,由欧拉定理 a ϕ ( n ) ≡ 1 ( m o d n ) a^{\phi(n)}\equiv 1(\mod n) aϕ(n)≡1(modn),得知 a 1140 ≡ 1 ( m o d 1337 ) a^{1140}\equiv 1(\mod 1337) a1140≡1(mod1337),所以可以先让 a a a对 1337 1337 1337取余,不妨仍记为 a a a,然后再求 b ′ = b m o d 1140 b'=b\mod 1140 b′=bmod1140,问题转为 a b ′ m o d 1337 a^{b'}\mod 1337 ab′mod1337,可以用快速幂来做。代码如下:
public class Solution {
public int superPow(int a, int[] b) {
int phin = 1140, x = 0;
for (int i = 0; i < b.length; i++) {
x = x * 10 + b[i];
x %= phin;
}
a %= 1337;
// 接下来开始快速幂
int res = 1;
while (x > 0) {
if ((x & 1) == 1) {
res = (res * a) % 1337;
}
x >>= 1;
a = a * a % 1337;
}
return res;
}
}
时间复杂度 O ( l b ) O(l_b) O(lb),空间 O ( 1 ) O(1) O(1)。