【Leetcode】372. Super Pow

题目地址:

https://leetcode.com/problems/super-pow/

给定一个正整数 a a a,和一个数组 b b b b b b表示一个很大的正整数(从左向右读),求 a b m o d    1337 a^b\mod 1337 abmod1337

1337 = 7 × 191 1337=7\times 191 1337=7×191,考虑欧拉函数 ϕ ( 1337 ) = 1337 ( 1 − 1 7 ) ( 1 − 1 191 ) = 1140 \phi(1337)=1337(1-\frac{1}{7})(1-\frac{1}{191})=1140 ϕ(1337)=1337(171)(11911)=1140,由欧拉定理 a ϕ ( n ) ≡ 1 ( m o d    n ) a^{\phi(n)}\equiv 1(\mod n) aϕ(n)1(modn),得知 a 1140 ≡ 1 ( m o d    1337 ) a^{1140}\equiv 1(\mod 1337) a11401(mod1337),所以可以先让 a a a 1337 1337 1337取余,不妨仍记为 a a a,然后再求 b ′ = b m o d    1140 b'=b\mod 1140 b=bmod1140,问题转为 a b ′ m o d    1337 a^{b'}\mod 1337 abmod1337,可以用快速幂来做。代码如下:

public class Solution {
    public int superPow(int a, int[] b) {
        int phin = 1140, x = 0;
        for (int i = 0; i < b.length; i++) {
            x = x * 10 + b[i];
            x %= phin;
        }
        a %= 1337;
                
		// 接下来开始快速幂
        int res = 1;
        while (x > 0) {
            if ((x & 1) == 1) {
                res = (res * a) % 1337;
            }
            x >>= 1;
            a = a * a % 1337;
        }
        
        return res;
    }
}

时间复杂度 O ( l b ) O(l_b) O(lb),空间 O ( 1 ) O(1) O(1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值