题目地址:
https://www.luogu.com.cn/problem/P1507
题目背景:
NASA(美国航空航天局)因为航天飞机的隔热瓦等其他安全技术问题一直大伤脑筋,因此在各方压力下终止了航天飞机的历史,但是此类事情会不会在以后发生,谁也无法保证,在遇到这类航天问题时,解决方法也许只能让航天员出仓维修,但是多次的维修会消耗航天员大量的能量,因此NASA便想设计一种食品方案,让体积和承重有限的条件下多装载一些高卡路里的食物.
题目描述:
航天飞机的体积有限,当然如果载过重的物品,燃料会浪费很多钱,每件食品都有各自的体积、质量以及所含卡路里,在告诉你体积和质量的最大值的情况下,请输出能达到的食品方案所含卡路里的最大值,当然每个食品只能使用一次.
输入格式:
第一行 两个数 体积最大值
(
<
400
)
(<400)
(<400)和质量最大值
(
<
400
)
(<400)
(<400)
第二行 一个数 食品总数
N
(
<
50
)
N(<50)
N(<50)
第三行-第
3
+
N
3+N
3+N行
每行三个数,体积
(
<
400
)
(<400)
(<400),质量
(
<
400
)
(<400)
(<400),所含卡路里
(
<
500
)
(<500)
(<500)
输出格式:
一个数 所能达到的最大卡路里(int范围内)
0 − 1 0-1 0−1背包问题。设 f [ k ] [ v ] [ m ] f[k][v][m] f[k][v][m]是只在前 k k k个物品里选,总体积不超过 v v v并且总质量不超过 m m m的情况下能达到的最大卡路里值。设第 k k k个物品卡路里值为 c [ k ] c[k] c[k],体积 v [ k ] v[k] v[k],质量 m [ k ] m[k] m[k],则可按照第 k k k个物品选不选来分类,有 f [ k ] [ v ] [ m ] = max { f [ k − 1 ] [ v ] [ m ] , f [ k − 1 ] [ v − v [ k ] ] [ m − m [ k ] ] + c [ k ] } f[k][v][m]=\max\{f[k-1][v][m],f[k-1][v-v[k]][m-m[k]]+c[k]\} f[k][v][m]=max{f[k−1][v][m],f[k−1][v−v[k]][m−m[k]]+c[k]}代码如下:
#include <iostream>
using namespace std;
const int N = 55;
int V, M, n;
int v[N], m[N], cal[N];
int f[410][410];
int main() {
scanf("%d%d", &V, &M);
scanf("%d", &n);
for (int i = 1; i <= n; i++)
scanf("%d%d%d", &v[i], &m[i], &cal[i]);
for (int i = 1; i <= n; i++)
for (int j = V; j >= v[i]; j--)
for (int k = M; k >= m[i]; k--)
f[j][k] = max(f[j][k], f[j - v[i]][k - m[i]] + cal[i]);
printf("%d\n", f[V][M]);
}
时间复杂度 O ( N V M ) O(NVM) O(NVM),空间 O ( V M ) O(VM) O(VM)。