题目地址:
https://www.luogu.com.cn/problem/P2357
题目背景:
在一个荒凉的墓地上,有一个令人尊敬的守墓人, 他看守的墓地从来没有被盗过, 所以人们很放心的把自己的先人的墓安顿在他那
守墓人能看好这片墓地是必然而不是偶然……
因为……守墓人懂风水 0.0
题目描述:
他把墓地分为主要墓碑和次要墓碑,主要墓碑只能有
1
1
1个,守墓人把他记为
1
1
1号, 而次要墓碑有
n
−
1
n-1
n−1个,守墓人将之编号为
2
,
3
…
n
2,3\dots n
2,3…n,所以构成了一个有
n
n
n个墓碑的墓地。而每个墓碑有一个初始的风水值,这些风水值决定了墓地的风水的好坏,所以守墓人需要经常来查询这些墓碑。善于运用风水的守墓人,通过一次次逆天改命,使得自己拥有了无限寿命,没人知道他活了多久。这天,你幸运的拜访到了他,他要求你和他共同见证接下来几年他的战果,但不过他每次统计风水值之和都需要你来帮他计算,算错了他会要你命QAQ。风水也不是不可变,除非遭遇特殊情况,已知在接下来的
2147483647
2147483647
2147483647年里,会有
n
n
n次灾难,守墓人会有几个操作:
1
1
1. 将
[
l
,
r
]
[l,r]
[l,r]这个区间所有的墓碑的风水值增加
k
k
k
2
2
2. 将主墓碑的风水值增加
k
k
k
3
3
3. 将主墓碑的风水值减少
k
k
k
4
4
4. 统计
[
l
,
r
]
[l,r]
[l,r]这个区间所有的墓碑的风水值之和
5
5
5. 求主墓碑的风水值
上面也说了,很多人会把先人的墓安居在这里,而且守墓人活了很多世纪→_→,墓碑的数量会多的你不敢相信= =
守墓人和善的邀请你帮他完成这些操作,要不然哪天你的旅馆爆炸了,天上下刀子…
为了活命,还是帮他吧
输入格式:
第一行,两个正整数
n
,
f
n,f
n,f表示共有
n
n
n块墓碑,并且在接下来的
2147483647
2147483647
2147483647年里,会有
f
f
f次世界末日;
第二行,
n
n
n个正整数,表示第
i
i
i块墓碑的风水值;
接下来
f
f
f行,每行都会有一个针对世界末日的解决方案,如题所述,标记同题。
输出格式:
输出会有若干行,对
4
4
4和
5
5
5的提问做出回答
数据范围:
20
%
20\%
20% 的数据满足:
1
≤
n
≤
100
1\leq n\leq 100
1≤n≤100
50
%
50\%
50% 的数据满足:
1
≤
n
≤
6000
1\leq n\leq 6000
1≤n≤6000
100
%
100\%
100% 的数据满足:
1
≤
n
,
f
≤
2
×
1
0
5
1\leq n,f\leq 2 \times 10^5
1≤n,f≤2×105,答案不超过
64
64
64位整数。
其实就是要设计一个数据结构,可以实现区间修改和区间求和。可以用分块做,参考https://blog.csdn.net/qq_46105170/article/details/117683952。当然也可以用线段树做。代码如下:
#include <iostream>
#include <cmath>
using namespace std;
const int N = 2e5 + 10, M = 600;
int n, m, len;
long add[M], sum[M];
long a[N];
int bel[N];
void modify(int l, int r, long k) {
if (bel[l] == bel[r]) for (int i = l; i <= r; i++) a[i] += k, sum[bel[l]] += k;
else {
int i = l, j = r;
while (bel[i] == bel[l]) sum[bel[l]] += k, a[i++] += k;
while (bel[j] == bel[r]) sum[bel[r]] += k, a[j--] += k;
for (int b = bel[i]; b <= bel[j]; b++) sum[b] += k * len, add[b] += k;
}
}
long query(int l, int r) {
long res = 0;
if (bel[l] == bel[r]) for (int i = l; i <= r; i++) res += a[i] + add[bel[l]];
else {
int i = l, j = r;
while (bel[i] == bel[l]) res += a[i++] + add[bel[l]];
while (bel[j] == bel[r]) res += a[j--] + add[bel[r]];
for (int b = bel[i]; b <= bel[j]; b++) res += sum[b];
}
return res;
}
int main() {
scanf("%d%d", &n, &m);
len = sqrt(n);
for (int i = 1; i <= n; i++) {
scanf("%ld", &a[i]);
bel[i] = i / len;
sum[bel[i]] += a[i];
}
while (m--) {
int op, l, r;
long k;
scanf("%d", &op);
if (op == 1) {
scanf("%d%d%ld", &l, &r, &k);
modify(l, r, k);
} else if (op == 2 || op == 3) {
scanf("%ld", &k);
if (op == 3) k = -k;
modify(1, 1, k);
} else if (op == 4) {
scanf("%d%d", &l, &r);
printf("%ld\n", query(l, r));
} else printf("%ld\n", query(1, 1));
}
}
预处理时间复杂度 O ( n ) O(n) O(n),每次询问时间 O ( n ) O(\sqrt n) O(n),空间 O ( n ) O(n) O(n)。