【洛谷】P2357 守墓人

题目地址:

https://www.luogu.com.cn/problem/P2357

题目背景:

在一个荒凉的墓地上,有一个令人尊敬的守墓人, 他看守的墓地从来没有被盗过, 所以人们很放心的把自己的先人的墓安顿在他那
守墓人能看好这片墓地是必然而不是偶然……
因为……守墓人懂风水 0.0

题目描述:
他把墓地分为主要墓碑和次要墓碑,主要墓碑只能有 1 1 1个,守墓人把他记为 1 1 1号, 而次要墓碑有 n − 1 n-1 n1个,守墓人将之编号为 2 , 3 … n 2,3\dots n 2,3n,所以构成了一个有 n n n个墓碑的墓地。而每个墓碑有一个初始的风水值,这些风水值决定了墓地的风水的好坏,所以守墓人需要经常来查询这些墓碑。善于运用风水的守墓人,通过一次次逆天改命,使得自己拥有了无限寿命,没人知道他活了多久。这天,你幸运的拜访到了他,他要求你和他共同见证接下来几年他的战果,但不过他每次统计风水值之和都需要你来帮他计算,算错了他会要你命QAQ。风水也不是不可变,除非遭遇特殊情况,已知在接下来的 2147483647 2147483647 2147483647年里,会有 n n n次灾难,守墓人会有几个操作:
1 1 1. 将 [ l , r ] [l,r] [l,r]这个区间所有的墓碑的风水值增加 k k k
2 2 2. 将主墓碑的风水值增加 k k k
3 3 3. 将主墓碑的风水值减少 k k k
4 4 4. 统计 [ l , r ] [l,r] [l,r]这个区间所有的墓碑的风水值之和
5 5 5. 求主墓碑的风水值
上面也说了,很多人会把先人的墓安居在这里,而且守墓人活了很多世纪→_→,墓碑的数量会多的你不敢相信= =
守墓人和善的邀请你帮他完成这些操作,要不然哪天你的旅馆爆炸了,天上下刀子…
为了活命,还是帮他吧

输入格式:
第一行,两个正整数 n , f n,f n,f表示共有 n n n块墓碑,并且在接下来的 2147483647 2147483647 2147483647年里,会有 f f f次世界末日;
第二行, n n n个正整数,表示第 i i i块墓碑的风水值;
接下来 f f f行,每行都会有一个针对世界末日的解决方案,如题所述,标记同题。

输出格式:
输出会有若干行,对 4 4 4 5 5 5的提问做出回答

数据范围:
20 % 20\% 20% 的数据满足: 1 ≤ n ≤ 100 1\leq n\leq 100 1n100
50 % 50\% 50% 的数据满足: 1 ≤ n ≤ 6000 1\leq n\leq 6000 1n6000
100 % 100\% 100% 的数据满足: 1 ≤ n , f ≤ 2 × 1 0 5 1\leq n,f\leq 2 \times 10^5 1n,f2×105,答案不超过 64 64 64位整数。

其实就是要设计一个数据结构,可以实现区间修改和区间求和。可以用分块做,参考https://blog.csdn.net/qq_46105170/article/details/117683952。当然也可以用线段树做。代码如下:

#include <iostream>
#include <cmath>

using namespace std;
const int N = 2e5 + 10, M = 600;
int n, m, len;
long add[M], sum[M];
long a[N];
int bel[N];

void modify(int l, int r, long k) {
  if (bel[l] == bel[r]) for (int i = l; i <= r; i++) a[i] += k, sum[bel[l]] += k;
  else {
    int i = l, j = r;
    while (bel[i] == bel[l]) sum[bel[l]] += k, a[i++] += k;
    while (bel[j] == bel[r]) sum[bel[r]] += k, a[j--] += k;
    for (int b = bel[i]; b <= bel[j]; b++) sum[b] += k * len, add[b] += k;
  }
}

long query(int l, int r) {
  long res = 0;
  if (bel[l] == bel[r]) for (int i = l; i <= r; i++) res += a[i] + add[bel[l]];
  else {
    int i = l, j = r;
    while (bel[i] == bel[l]) res += a[i++] + add[bel[l]];
    while (bel[j] == bel[r]) res += a[j--] + add[bel[r]];
    for (int b = bel[i]; b <= bel[j]; b++) res += sum[b];
  }
  return res;
}

int main() {
  scanf("%d%d", &n, &m);
  len = sqrt(n);
  for (int i = 1; i <= n; i++) {
    scanf("%ld", &a[i]);
    bel[i] = i / len;
    sum[bel[i]] += a[i];
  }

  while (m--) {
    int op, l, r;
    long k;
    scanf("%d", &op);
    if (op == 1) {
      scanf("%d%d%ld", &l, &r, &k);
      modify(l, r, k);
    } else if (op == 2 || op == 3) {
      scanf("%ld", &k);
      if (op == 3) k = -k;
      modify(1, 1, k);
    } else if (op == 4) {
      scanf("%d%d", &l, &r);
      printf("%ld\n", query(l, r));
    } else printf("%ld\n", query(1, 1));
  }
}

预处理时间复杂度 O ( n ) O(n) O(n),每次询问时间 O ( n ) O(\sqrt n) O(n ),空间 O ( n ) O(n) O(n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值