题目地址:
https://www.acwing.com/problem/content/description/2561/
在一个
N
×
N
N×N
N×N的点阵上,取其中
4
4
4个点恰好组成一个正方形的
4
4
4个顶点,一共有多少种不同的取法?由于结果可能非常大,你只需要输出模
1
0
9
+
7
10^9+7
109+7的余数。
如上图所示的正方形都是合法的。
输入格式:
输入包含一个整数
N
N
N。
输出格式:
输出一个整数代表答案。
数据范围:
2
≤
N
≤
1
0
6
2≤N≤10^6
2≤N≤106
所有的正着放的正方形可以按边长分类,边长为 N − 1 N-1 N−1的正方形只有 1 1 1个,类似的边长为 N − i N-i N−i的正方形有 i 2 i^2 i2个,即边长 i i i的正方形有 ( N − i ) 2 (N-i)^2 (N−i)2个。接下来考虑斜着放的正方形有多少个。对于所有的边长为 i i i的正着放的正方形,其内接的斜着放的正方形恰好有 i − 1 i-1 i−1个,而边长为 i i i的正着放的正方形有 ( N − i ) 2 (N-i)^2 (N−i)2个,所以其内接的斜着放的正方形就有 ( N − i ) 2 ( i − 1 ) (N-i)^2(i-1) (N−i)2(i−1)个。所以答案就是: ∑ i = 1 N i ( N − i ) 2 \sum_{i=1}^N i(N-i)^2 i=1∑Ni(N−i)2代码如下:
#include <iostream>
using namespace std;
const int MOD = 1e9 + 7;
int n;
int main() {
scanf("%d", &n);
int res = 0;
for (int i = 1; i <= n; i++)
res = (res + (long)(n - i) * (n - i) * i) % MOD;
printf("%d\n", res);
}
时间复杂度 O ( n ) O(n) O(n),空间 O ( 1 ) O(1) O(1)。