【ACWing】2559. 数正方形

题目地址:

https://www.acwing.com/problem/content/description/2561/

在一个 N × N N×N N×N的点阵上,取其中 4 4 4个点恰好组成一个正方形的 4 4 4个顶点,一共有多少种不同的取法?由于结果可能非常大,你只需要输出模 1 0 9 + 7 10^9+7 109+7的余数。
在这里插入图片描述
如上图所示的正方形都是合法的。

输入格式:
输入包含一个整数 N N N

输出格式:
输出一个整数代表答案。

数据范围:
2 ≤ N ≤ 1 0 6 2≤N≤10^6 2N106

所有的正着放的正方形可以按边长分类,边长为 N − 1 N-1 N1的正方形只有 1 1 1个,类似的边长为 N − i N-i Ni的正方形有 i 2 i^2 i2个,即边长 i i i的正方形有 ( N − i ) 2 (N-i)^2 (Ni)2个。接下来考虑斜着放的正方形有多少个。对于所有的边长为 i i i的正着放的正方形,其内接的斜着放的正方形恰好有 i − 1 i-1 i1个,而边长为 i i i的正着放的正方形有 ( N − i ) 2 (N-i)^2 (Ni)2个,所以其内接的斜着放的正方形就有 ( N − i ) 2 ( i − 1 ) (N-i)^2(i-1) (Ni)2(i1)个。所以答案就是: ∑ i = 1 N i ( N − i ) 2 \sum_{i=1}^N i(N-i)^2 i=1Ni(Ni)2代码如下:

#include <iostream>
using namespace std;

const int MOD = 1e9 + 7;
int n;

int main() {
  scanf("%d", &n);
  int res = 0;
  for (int i = 1; i <= n; i++)
    res = (res + (long)(n - i) * (n - i) * i) % MOD;

  printf("%d\n", res);
}

时间复杂度 O ( n ) O(n) O(n),空间 O ( 1 ) O(1) O(1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值