题目地址:
https://leetcode.com/problems/valid-palindrome-iii/description/
给定一个长 n n n字符串 s s s,再给定一个正整数 k k k,问进行最多 k k k次删除可否使得 s s s变为回文串。
区间动态规划问题。设 f [ l ] [ r ] f[l][r] f[l][r]是 s [ l : r ] s[l:r] s[l:r]至少经过多少次删除能成为回文串。当 l = r l=r l=r的时候显然 f [ l ] [ r ] = 0 f[l][r]=0 f[l][r]=0;当 l + 1 = r l+1=r l+1=r的时候,如果 s [ l ] = s [ r ] s[l]=s[r] s[l]=s[r]则 f [ l ] [ r ] = 1 f[l][r]=1 f[l][r]=1,否则为 0 0 0;其余情况,如果 s [ l ] = s [ r ] s[l]=s[r] s[l]=s[r],那么两端的字符是不需要删的,所以 f [ l ] [ r ] = f [ l + 1 ] [ r − 1 ] f[l][r]=f[l+1][r-1] f[l][r]=f[l+1][r−1];否则,两者必然要删一个,所以 f [ l ] [ r ] = 1 + min { f [ l + 1 ] [ r ] , f [ l ] [ r − 1 ] } f[l][r]=1+\min\{f[l+1][r],f[l][r-1]\} f[l][r]=1+min{f[l+1][r],f[l][r−1]}。代码如下:
class Solution {
public:
bool isValidPalindrome(string s, int k) {
int n = s.size();
int f[n][n];
memset(f, 0, sizeof f);
for (int len = 2; len <= n; len++)
for (int l = 0; l + len - 1 < n; l++) {
int r = l + len - 1;
if (len == 2) f[l][r] = s[l] != s[r];
else {
if (s[l] == s[r]) f[l][r] = f[l + 1][r - 1];
else f[l][r] = 1 + min(f[l + 1][r], f[l][r - 1]);
}
}
return f[0][n - 1] <= k;
}
};
时空复杂度 O ( n 2 ) O(n^2) O(n2)。