【ACWing】225. 矩阵幂求和

题目地址:

https://www.acwing.com/problem/content/description/227/

给定 n × n n×n n×n矩阵 A A A和正整数 k k k,求和 S = A + A 2 + A 3 + … + A k S=A+A^2+A^3+…+A^k S=A+A2+A3++Ak

输入格式:
输入只包含一个测试用例。
第一行输入包含三个正整数 n n n k k k m m m
接下来 n n n行,每行包含 n n n个非负整数(均不超过 32 , 768 32,768 32,768),用以描绘矩阵 A A A

输出格式:
按与描述矩阵 A A A相同的方式,输出将 S S S中所有元素对 m m m取模后得到的矩阵。

数据范围:
1 ≤ n ≤ 30 1≤n≤30 1n30
1 ≤ k ≤ 1 0 9 1≤k≤10^9 1k109
1 ≤ m < 1 0 4 1≤m<10^4 1m<104

I I I n n n阶单位阵,构造 B = [ A I 0 I ] B = \left[ \begin{matrix} A & I \\ 0 & I \\ \end{matrix} \right] B=[A0II],则 B 2 = [ A I 0 I ] [ A I 0 I ] = [ A 2 A + I 0 I ] B^2=\left[ \begin{matrix} A & I \\ 0 & I \\ \end{matrix} \right]\left[ \begin{matrix} A & I \\ 0 & I \\ \end{matrix} \right]=\left[ \begin{matrix} A^2 & A+I \\ 0 & I \\ \end{matrix} \right] B2=[A0II][A0II]=[A20A+II]以此类推,可由数学归纳法知道 B k + 1 B^{k+1} Bk+1的右上角为 A k + A k − 1 + . . . + I A^k+A^{k-1}+...+I Ak+Ak1+...+I,将这个矩阵减去 I I I即得到答案。求 B k B^k Bk可以用快速幂。代码如下:

#include <cstring>
#include <iostream>
using namespace std;

const int N = 65;
int n, k, MOD;
int a[N][N], res[N][N];

void mult(int a[][N], int b[][N]) {
  static int c[N][N];
  memset(c, 0, sizeof c);
  for (int i = 1; i <= n; i++)
    for (int j = 1; j <= n; j++)
      for (int k = 1; k <= n; k++)
        c[i][j] = ((c[i][j] + a[i][k] * b[k][j]) % MOD + MOD) % MOD;

  for (int i = 1; i <= n; i++)
    for (int j = 1; j <= n; j++) a[i][j] = c[i][j];
}

void fast_pow(int k) {
  while (k) {
    if (k & 1) mult(res, a);
    k >>= 1;
    mult(a, a);
  }
}

int main() {
  scanf("%d%d%d", &n, &k, &MOD);
  for (int i = 1; i <= 2 * n; i++)
    for (int j = 1; j <= 2 * n; j++) {
      if (i <= n && j <= n) scanf("%d", &a[i][j]);
      else if (j - i == n || i > n && i == j)
        a[i][j] = 1;

      if (i == j) res[i][i] = 1;
    }

  n <<= 1;
  fast_pow(k + 1);
  n >>= 1;
  for (int i = 1; i <= n; i++)
    res[i][i + n] = ((res[i][i + n] - 1) % MOD + MOD) % MOD;

  for (int i = 1; i <= n; i++) {
    for (int j = n + 1; j <= 2 * n; j++) printf("%d ", res[i][j]);
    puts("");
  }
}

时间复杂度 O ( n 3 log ⁡ k ) O(n^3\log k) O(n3logk),空间 O ( n 2 ) O(n^2) O(n2)

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值