【ACWing】1139. 最优布线问题

文章讲述了在一个有n台计算机的系统中,如何通过最小化费用连接所有计算机,利用Prim算法求解稠密图上的最小生成树问题,给出了一段C++代码实现,时间复杂度为O(n^2)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目地址:

https://www.acwing.com/problem/content/description/1141/

学校有 n n n台计算机,编号是 1 ∼ n 1∼n 1n,为了方便数据传输,现要将它们用数据线连接起来,同一条数据线中数据的传输可以是双向的。两台计算机被连接是指它们有数据线连接。由于计算机所处的位置不同,因此不同的两台计算机的连接费用往往是不同的。当然,如果将任意两台计算机都用数据线连接,费用将是相当庞大的。为了节省费用,我们采用数据的间接传输手段,即一台计算机可以间接的通过若干台计算机(作为中转)来实现与另一台计算机的连接。现在由你负责连接这些计算机,任务是使任意两台计算机都连通(不管是直接的或间接的)。

输入格式:
第一行为整数 n n n,表示计算机的数目。
此后的 n n n行,每行 n n n个整数,输入一个对角线上全部是 0 0 0的对称矩阵。
其中第 x + 1 x+1 x+1 y y y列的整数表示直接连接第 x x x台计算机和第 y y y台计算机的费用。

输出格式:
一个整数,表示最小的连接费用。

数据范围:
2 ≤ n ≤ 100 2≤n≤100 2n100
连接任意两台计算机的费用均是非负整数且不超过 10000 10000 10000

稠密图上的最小生成树问题,可以用Prim算法,参考https://blog.csdn.net/qq_46105170/article/details/113824532。代码如下:

#include <algorithm>
#include <cstring>
#include <iostream>
using namespace std;

const int N = 110;
int n;
int g[N][N];
int dist[N];
bool vis[N];

int prim() {
  memset(dist, 0x3f, sizeof dist);
  int res = 0;
  for (int i = 1; i <= n; i++) {
    int t = -1;
    for (int j = 1; j <= n; j++)
      if (!vis[j] && (!~t || dist[t] > dist[j])) t = j;

    if (i > 1) res += dist[t];
    vis[t] = true;
    for (int j = 1; j <= n; j++)
      if (!vis[j]) dist[j] = min(dist[j], g[t][j]);
  }

  return res;
}

int main() {
  scanf("%d", &n);
  for (int i = 1; i <= n; i++)
    for (int j = 1; j <= n; j++) scanf("%d", &g[i][j]);

  printf("%d\n", prim());
}

时空复杂度 O ( n 2 ) O(n^2) O(n2)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值