题目地址:
https://www.acwing.com/problem/content/description/1141/
学校有 n n n台计算机,编号是 1 ∼ n 1∼n 1∼n,为了方便数据传输,现要将它们用数据线连接起来,同一条数据线中数据的传输可以是双向的。两台计算机被连接是指它们有数据线连接。由于计算机所处的位置不同,因此不同的两台计算机的连接费用往往是不同的。当然,如果将任意两台计算机都用数据线连接,费用将是相当庞大的。为了节省费用,我们采用数据的间接传输手段,即一台计算机可以间接的通过若干台计算机(作为中转)来实现与另一台计算机的连接。现在由你负责连接这些计算机,任务是使任意两台计算机都连通(不管是直接的或间接的)。
输入格式:
第一行为整数
n
n
n,表示计算机的数目。
此后的
n
n
n行,每行
n
n
n个整数,输入一个对角线上全部是
0
0
0的对称矩阵。
其中第
x
+
1
x+1
x+1行
y
y
y列的整数表示直接连接第
x
x
x台计算机和第
y
y
y台计算机的费用。
输出格式:
一个整数,表示最小的连接费用。
数据范围:
2
≤
n
≤
100
2≤n≤100
2≤n≤100
连接任意两台计算机的费用均是非负整数且不超过
10000
10000
10000。
稠密图上的最小生成树问题,可以用Prim算法,参考https://blog.csdn.net/qq_46105170/article/details/113824532。代码如下:
#include <algorithm>
#include <cstring>
#include <iostream>
using namespace std;
const int N = 110;
int n;
int g[N][N];
int dist[N];
bool vis[N];
int prim() {
memset(dist, 0x3f, sizeof dist);
int res = 0;
for (int i = 1; i <= n; i++) {
int t = -1;
for (int j = 1; j <= n; j++)
if (!vis[j] && (!~t || dist[t] > dist[j])) t = j;
if (i > 1) res += dist[t];
vis[t] = true;
for (int j = 1; j <= n; j++)
if (!vis[j]) dist[j] = min(dist[j], g[t][j]);
}
return res;
}
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++) scanf("%d", &g[i][j]);
printf("%d\n", prim());
}
时空复杂度 O ( n 2 ) O(n^2) O(n2)。