CSP:202104-1 灰度直方图
问题描述
一幅长宽分别为
n
n
n 个像素和
m
m
m 个像素的灰度图像可以表示为一个
n
×
m
n \times m
n×m 大小的矩阵
A
A
A。
其中每个元素
A
i
j
A_{ij}
Aij(0
≤
\le
≤ i < n、0
≤
\le
≤ j < m)是一个
[
0
,
L
)
[0, L)
[0,L) 范围内的整数,表示对应位置像素的灰度值。
具体来说,一个
8
8
8 比特的灰度图像中每个像素的灰度范围是
[
0
,
128
)
[0, 128)
[0,128)。
一副灰度图像的灰度统计直方图(以下简称“直方图”)可以表示为一个长度为
L
L
L 的数组
h
h
h,其中
h
[
x
]
h[x]
h[x](0
≤
\le
≤ x < L)表示该图像中灰度值为
x
x
x 的像素个数。显然,
h
[
0
]
h[0]
h[0] 到
h
[
L
−
1
]
h[L-1]
h[L−1] 的总和应等于图像中的像素总数
n
⋅
m
n \cdot m
n⋅m。
已知一副图像的灰度矩阵
A
A
A,试计算其灰度直方图
h
[
0
]
h[0]
h[0],
h
[
1
]
h[1]
h[1],
⋅
⋅
⋅
···
⋅⋅⋅,
h
[
L
−
1
]
h[L-1]
h[L−1]。
输入格式
输入共
n
+
1
n+1
n+1 行。
输入的第一行包含三个用空格分隔的正整数
n
n
n 、
m
m
m 和
L
L
L,含义如前文所述。
第二到第
n
+
1
n+1
n+1 行输入矩阵
A
A
A。
第
i
+
2
i+2
i+2(0
≤
\le
≤ i < n)行包含用空格分隔的
m
m
m 个整数,依次为
A
i
0
A_{i0}
Ai0,
A
i
1
A_{i1}
Ai1,
⋅
⋅
⋅
···
⋅⋅⋅,
A
i
(
m
−
1
)
A_{i(m-1)}
Ai(m−1)。
输出格式
输出仅一行,包含用空格分隔的 L L L 个整数 h [ 0 ] h[0] h[0], h [ 1 ] h[1] h[1], ⋅ ⋅ ⋅ ··· ⋅⋅⋅, h [ L − 1 ] h[L-1] h[L−1],表示输入图像的灰度直方图。
样例输入
4 4 16
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
样例输出
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
样例输入
7 11 8
0 7 0 0 0 7 0 0 7 7 0
7 0 7 0 7 0 7 0 7 0 7
7 0 0 0 7 0 0 0 7 0 7
7 0 0 0 0 7 0 0 7 7 0
7 0 0 0 0 0 7 0 7 0 0
7 0 7 0 7 0 7 0 7 0 0
0 7 0 0 0 7 0 0 7 0 0
样例输出
48 0 0 0 0 0 0 29
code
#include<stdio.h>
int main(){
int n,m,l;
int h,j[257]={0};
scanf("%d",&n);
scanf("%d",&m);
scanf("%d",&l);
for(int a=0;a<n;a++)
for(int b=0;b<m;b++){
scanf("%d",&h);
j[h]++;
}
for(int a=0;a<l;a++)
printf("%d ",j[a]);
return 0;
}