c++视觉处理-----膨胀腐蚀

本文详细介绍了OpenCV中的膨胀和腐蚀操作,包括它们在形态学图像处理中的作用、cv::dilate()和cv::erode()函数的用法,以及如何实现实时在摄像头视频上进行膨胀和腐蚀处理。
摘要由CSDN通过智能技术生成

c++视觉处理膨胀腐蚀

膨胀腐蚀的区别

膨胀(Dilation)和腐蚀(Erosion)是形态学图像处理中的两种基本操作,它们有不同的效果和应用:

  1. 膨胀(Dilation):

    • 膨胀操作用于增加物体的尺寸,使物体变大。
    • 它通过将每个像素替换为其邻域内的最大值来实现。
    • 膨胀通常用于连接分离的物体、填充空洞、增加物体的面积,以及提取物体的外部轮廓。
    • 在二值图像中,膨胀可以用于扩展白色物体(前景)的区域,通常与其他形态学操作(如开运算或闭运算)一起使用。
  2. 腐蚀(Erosion):

    • 腐蚀操作用于减小物体的尺寸,使物体变小。
    • 它通过将每个像素替换为其邻域内的最小值来实现。
    • 腐蚀通常用于分离接触的物体、去除小的噪点、缩小物体的面积,以及提取物体的内部结构。
    • 在二值图像中,腐蚀可以用于缩小白色物体(前景)的区域。

总结来说,膨胀使物体变大,而腐蚀使物体变小。这两种操作通常在形态学图像处理中配合使用,以实现不同的图像增强、分割和去噪等应用。同时,它们也是其他复杂形态学操作(如开运算和闭运算)的基本构建块。

膨胀:cv::dilate()

cv::dilate() 是OpenCV中的一个图像形态学操作函数,用于执行图像的膨胀操作。膨胀是形态学处理中的一种操作,它可以用来增强二值图像中的目标区域。膨胀操作通过将目标区域扩展,可以填充空洞、连接断裂的区域以及增加目标的尺寸。

下面是 cv::dilate() 函数的基本语法:

void cv::dilate(
    cv::InputArray src,          // 输入图像
    cv::OutputArray dst,         // 输出图像
    cv::InputArray kernel,       // 膨胀核
    cv::Point anchor = cv::Point(-1,-1),
    int iterations = 1,
    int borderType = cv::BORDER_CONSTANT,
    const cv::Scalar& borderValue = cv::morphologyDefaultBorderValue()
);

参数解释:

  • src:输入图像。
  • dst:输出图像,将膨胀后的图像存储在这里。
  • kernel:膨胀核,它定义了膨胀操作的形状和大小。通常使用 cv::getStructuringElement() 来创建膨胀核。
  • anchor:锚点位置,指示膨胀核的中心。默认值为 (-1, -1),表示核的中心。
  • iterations:膨胀操作的迭代次数。默认值为 1。
  • borderType:边界处理方式,用于处理边界像素。默认值为 cv::BORDER_CONSTANT
  • borderValue:在边界处理方式为 cv::BORDER_CONSTANT 时使用的边界像素值。默认值为 cv::morphologyDefaultBorderValue()

膨胀操作的基本思想是将核在图像上滑动,如果核覆盖区域内的任何像素值为非零(白色),则将目标像素置为白色。这导致了目标区域的扩张。

创建形态学操作的结构元素:cv::getStructuringElement()

cv::getStructuringElement() 是OpenCV中的一个函数,用于创建形态学操作的结构元素(structuring element)。形态学操作(如腐蚀、膨胀、开运算、闭运算等)通常需要一个结构元素,该元素定义了操作的形状和大小。cv::getStructuringElement() 函数用于创建这样的结构元素。

以下是 cv::getStructuringElement() 函数的基本语法:

cv::Mat cv::getStructuringElement(
    int shape,          // 结构元素的形状,如 cv::MORPH_RECT、cv::MORPH_ELLIPSE、cv::MORPH_CROSS 等
    cv::Size ksize,     // 结构元素的大小,通常是一个奇数大小的矩阵
    cv::Point anchor = cv::Point(-1,-1)
);

参数解释:

  • shape:结构元素的形状,可以是以下常量之一:
    • cv::MORPH_RECT:矩形结构元素。
    • cv::MORPH_ELLIPSE:椭圆结构元素。
    • cv::MORPH_CROSS:十字形结构元素。
  • ksize:结构元素的大小,通常是一个奇数大小的矩阵,表示结构元素的宽度和高度。
  • anchor:锚点位置,通常为 (-1, -1),表示结构元素的中心。

cv::getStructuringElement() 函数返回一个 cv::Mat 对象,表示所创建的结构元素。

以下是一个示例,演示如何使用 cv::getStructuringElement() 创建不同形状的结构元素:

#include <opencv2/opencv.hpp>

int main() {
    // 创建矩形结构元素
    cv::Mat rectangularElement = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(5, 5));

    // 创建椭圆形结构元素
    cv::Mat ellipticalElement = cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(5, 5));

    // 创建十字形结构元素
    cv::Mat crossElement = cv::getStructuringElement(cv::MORPH_CROSS, cv::Size(5, 5));

    // 显示创建的结构元素
    cv::imshow("Rectangular Element", rectangularElement);
    cv::imshow("Elliptical Element", ellipticalElement);
    cv::imshow("Cross Element", crossElement);

    cv::waitKey(0);

    return 0;
}

在这个示例中,我们创建了三种不同形状的结构元素:矩形、椭圆和十字形。您可以根据需要调整 cv::MORPH_RECTcv::MORPH_ELLIPSEcv::MORPH_CROSS 常量以选择不同的结构元素形状。这些结构元素通常用于形态学操作,例如腐蚀和膨胀。

使用cv::getStructuringElement() 3x3的矩形核再使用膨胀cv::dilate()操作

以下是一个示例,演示如何使用 cv::dilate() 函数对二值图像执行膨胀操作:

#include <opencv2/opencv.hpp>

int main() {
    // 读取输入二值图像
    cv::Mat binaryImage = cv::imread("binary_image.png", cv::IMREAD_GRAYSCALE);

    if (binaryImage.empty()) {
        std::cerr << "Failed to open the input image!" << std::endl;
        return -1;
    }

    // 定义膨胀核(3x3的矩形核)
    cv::Mat kernel = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(3, 3));

    // 执行膨胀操作
    cv::Mat dilatedImage;
    cv::dilate(binaryImage, dilatedImage, kernel);

    // 显示原始二值图像和膨胀后的图像
    cv::namedWindow("Binary Image", cv::WINDOW_NORMAL);
    cv::namedWindow("Dilated Image", cv::WINDOW_NORMAL);

    cv::imshow("Binary Image", binaryImage);
    cv::imshow("Dilated Image", dilatedImage);

    cv::waitKey(0);

    return 0;
}

在这个示例中,我们首先读取了一个二值图像,然后定义了一个膨胀核(3x3的矩形核)。接下来,我们使用 cv::dilate() 函数对输入的二值图像执行膨胀操作,并将结果存储在 dilatedImage 中。最后,我们显示了原始二值图像和膨胀后的图像。

在这里插入图片描述

腐蚀:cv::erode()

腐蚀是图像形态学处理中的一种基本操作,通常用于减小二值图像中的目标对象的尺寸。腐蚀操作通过在图像上滑动一个结构元素(通常是一个小的矩形或圆形核),将核中心与图像中的像素进行比较,如果核中的所有像素都与图像中的像素匹配(都是白色像素),则将中心像素保留为白色,否则将其置为黑色。

在OpenCV中,可以使用 cv::erode() 函数来执行腐蚀操作。

以下是 cv::erode() 函数的基本语法:

void cv::erode(
    cv::InputArray src,          // 输入图像
    cv::OutputArray dst,         // 输出图像
    cv::InputArray kernel,       // 结构元素核
    cv::Point anchor = cv::Point(-1,-1),
    int iterations = 1,
    int borderType = cv::BORDER_CONSTANT,
    const cv::Scalar& borderValue = cv::morphologyDefaultBorderValue()
);

参数解释:

  • src:输入图像,通常是一个二值图像。
  • dst:输出图像,将腐蚀后的图像存储在这里。
  • kernel:结构元素核,用于定义腐蚀操作的形状和大小。
  • anchor:锚点位置,指示结构元素核的中心。默认值为 (-1, -1),表示核的中心。
  • iterations:腐蚀操作的迭代次数。默认值为 1。
  • borderType:边界处理方式,用于处理边界像素。默认值为 cv::BORDER_CONSTANT
  • borderValue:在边界处理方式为 cv::BORDER_CONSTANT 时使用的边界像素值。默认值为 cv::morphologyDefaultBorderValue()

以下是一个示例,演示如何使用 cv::erode() 函数对二值图像执行腐蚀操作:

#include <opencv2/opencv.hpp>

int main() {
    // 读取输入二值图像
    cv::Mat binaryImage = cv::imread("binary_image.png", cv::IMREAD_GRAYSCALE);

    if (binaryImage.empty()) {
        std::cerr << "Failed to open the input image!" << std::endl;
        return -1;
    }

    // 定义腐蚀核(3x3的矩形核)
    cv::Mat kernel = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(3, 3));

    // 执行腐蚀操作
    cv::Mat erodedImage;
    cv::erode(binaryImage, erodedImage, kernel);

    // 显示原始二值图像和腐蚀后的图像
    cv::namedWindow("Binary Image", cv::WINDOW_NORMAL);
    cv::namedWindow("Eroded Image", cv::WINDOW_NORMAL);

    cv::imshow("Binary Image", binaryImage);
    cv::imshow("Eroded Image", erodedImage);

    cv::waitKey(0);

    return 0;
}

在这个示例中,我们首先读取了一个二值图像,然后定义了一个腐蚀核(3x3的矩形核)。接下来,我们使用 cv::erode() 函数对输入的二值图像执行腐蚀操作,并将结果存储在 erodedImage 中。最后,我们显示了原始二值图像和腐蚀后的图像。腐蚀操作通常用于去除小的噪点、分离接触的目标对象等。

在这里插入图片描述

使用本地相机实时膨胀处理

#include <opencv2/opencv.hpp>

// 全局变量,用于存储滑动条的值
int kernelSize = 1; // 初始核大小为1

// 回调函数,用于处理滑动条的值变化
void onTrackbar(int value, void* userdata) {
    cv::VideoCapture* cap = static_cast<cv::VideoCapture*>(userdata);

    // 创建窗口
    cv::namedWindow("Live Camera Feed", cv::WINDOW_NORMAL);

    while (true) {
        cv::Mat frame;

        // 从相机中读取一帧图像
        *cap >> frame;

        if (frame.empty()) {
            std::cerr << "Failed to read frame from the camera!" << std::endl;
            break;
        }

        // 定义膨胀核
        cv::Mat kernel = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(kernelSize, kernelSize));

        // 创建一个膨胀后的图像副本
        cv::Mat dilatedFrame;

        // 使用膨胀操作处理图像
        cv::dilate(frame, dilatedFrame, kernel);

        // 显示实时摄像头图像和膨胀后的图像
        cv::imshow("Live Camera Feed", frame);
        cv::imshow("Dilated Frame", dilatedFrame);

        // 检查键盘输入,如果按下ESC键,退出循环
        char key = cv::waitKey(1);
        if (key == 27) // 27对应ESC键的ASCII码
            break;
    }
}

int main() {
    cv::VideoCapture cap(0);

    if (!cap.isOpened()) {
        std::cerr << "Could not open the camera!" << std::endl;
        return -1;
    }

    // 创建窗口
    cv::namedWindow("Live Camera Feed", cv::WINDOW_NORMAL);

    // 创建滑动条
    cv::createTrackbar("Kernel Size", "Live Camera Feed", &kernelSize, 30, onTrackbar, &cap);

    // 初始化一次滑动条回调函数以显示默认值
    onTrackbar(kernelSize, &cap);

    // 释放摄像头资源和关闭窗口
    cap.release();
    cv::destroyAllWindows();

    return 0;
}

使用本地相机实时腐蚀处理

#include <opencv2/opencv.hpp>

// 全局变量,用于存储滑动条的值
int kernelSize = 1; // 初始核大小为1

// 回调函数,用于处理滑动条的值变化
void onTrackbar(int value, void* userdata) {
    cv::VideoCapture* cap = static_cast<cv::VideoCapture*>(userdata);

    // 创建窗口
    cv::namedWindow("Live Camera Feed", cv::WINDOW_NORMAL);

    while (true) {
        cv::Mat frame;

        // 从相机中读取一帧图像
        *cap >> frame;

        if (frame.empty()) {
            std::cerr << "Failed to read frame from the camera!" << std::endl;
            break;
        }

        // 定义腐蚀核
        cv::Mat kernel = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(kernelSize, kernelSize));

        // 创建一个腐蚀后的图像副本
        cv::Mat erodedFrame;

        // 使用腐蚀操作处理图像
        cv::erode(frame, erodedFrame, kernel);

        // 显示实时摄像头图像和腐蚀后的图像
        cv::imshow("Live Camera Feed", frame);
        cv::imshow("Eroded Frame", erodedFrame);

        // 检查键盘输入,如果按下ESC键,退出循环
        char key = cv::waitKey(1);
        if (key == 27) // 27对应ESC键的ASCII码
            break;
    }
}

int main() {
    cv::VideoCapture cap(0);

    if (!cap.isOpened()) {
        std::cerr << "Could not open the camera!" << std::endl;
        return -1;
    }

    // 创建窗口
    cv::namedWindow("Live Camera Feed", cv::WINDOW_NORMAL);

    // 创建滑动条
    cv::createTrackbar("Kernel Size", "Live Camera Feed", &kernelSize, 30, onTrackbar, &cap);

    // 初始化一次滑动条回调函数以显示默认值
    onTrackbar(kernelSize, &cap);

    // 释放摄像头资源和关闭窗口
    cap.release();
    cv::destroyAllWindows();

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

枭玉龙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值