学习笔记:AAU-net: An Adaptive Attention U-net for Breast Lesions Segmentation in Ultrasound Images

本文探讨了在深度学习领域,如何通过将Unet的传统下采样模块替换为具有通道和空间注意力机制的HAAM模块,以及该模块中使用的特定卷积操作,以提升模型性能。

一、结构

二、创新点

1、将传统Unet的下采样模块换成了HAAM模块

2、HAAM模块先通道注意力机制,后空间注意力机制

3、在HAAM模块开头,使用3*3卷积、5*5卷积以及3*3的空洞卷积

        ps.通道注意力机制学习各通道的重要性,空间注意力机制捕获重要特征。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值