FRBNet: Feedback refinement boundary network for semantic segmentation in breast ultrasound images

FRBNet:用于乳腺超声图像语义分割的反馈细化边界网络

摘要:超声乳腺肿瘤分割是计算机辅助诊断的关键步骤,是临床诊断和分析的重要依据。由于乳腺肿瘤具有黑色阴影、模糊边界和不同类别之间颜色强度变化不均匀的特点,因此从超声图像中准确分割乳腺肿瘤是一项具有挑战性的任务。目前,大多数乳腺肿瘤分割方法侧重于提取多尺度信息和融合上下文信息,而低估了特征信息在分割任务中帮助识别目标边界的重要性。当网络生成最终的预测图时,边界特征信息的丢失很容易导致目标边界的不连续或不准确。为了解决这一问题,我们提出了一种新的反馈细化边界网络(FRBNet),用于超声图像中乳腺肿瘤区域的精确分割,该网络主要由通道校准模块(CCM)、边界检测模块(BD)和反馈细化模块(FRM)组成。具体而言,CCM在融合低级特征映射和高级特征映射之前,首先采用重分布特征通道响应的方法,增强携带关键目标信息的通道,抑制低级特征映射中的噪声通道然后,BD模块通过额外学习乳腺肿瘤的边界,提高分割结果中边界的质量,为后续的预测提供准确的边界特征信息FRM采用反馈机制,将粗预测图与包含目标边界特征信息的特征图互补融合,在生成最终预测图之前获得最佳预测结果。在公共超声乳房数据集上的实验结果表明,我们的网络优于其他医学图像分割方法。

1 介绍

女性乳腺癌是女性中最常见的癌症。在2020年全球癌症病例统计中,乳腺癌发病率占总病例的11.7%,已超过肺癌的11.4%,成为世界头号癌症,严重危害女性健康。此外,乳腺癌的早期诊断和治疗已被证明可有效提高生存率。目前,医院已广泛应用x射线成像、磁共振成像(MRI)、超声成像等技术对各种疾病进行早期诊断,辅助医生进行临床诊断,提高诊断准确率。

其中,超声成像因其成本低、实时性好等优点,在乳腺癌的早期诊断中发挥着重要作用。然而,在二维超声图像中实现乳腺病灶的自动分割是一项具有挑战性的任务。首先,乳腺肿瘤变化大,边界模糊,形状不规则。

其次,乳腺肿瘤在超声成像中有黑色阴影,不同类别之间的颜色强度变化不均匀;示例见图1。

图1所示。具有挑战性的例子超声乳腺肿瘤分割。绿色实线是乳腺肿瘤组织的边界。左:乳房超声图像。右:乳腺病变区。(a)乳腺病变区与非病变区颜色强度变化不明显,边界模糊。(b)右侧的红色箭头表示带有黑色阴影的阴影。(c)乳腺病变组织边界非常不规则。其中,通过比较(a)和(c)可以发现显著的个体尺寸差异。

在过去的几十年里,人们提出了许多传统的方法来分割乳腺病变组织。Shan等人[3]提出了一种结合最大能量方向相位和径向距离来表示病灶特征的全自动乳腺分割方法。Liu等人提出了一种新的基于水平集的乳腺超声图像分割活动剖面模型。Ikedo等人通过结合形态学方法和分水岭算法检测乳腺肿瘤。然而,这些传统方法是基于数据集的特征,然后实现手工设计的特征,如纹理特征或位置信息,这些特征不稳定,抗干扰能力差,容易受到成像质量的影响。

近年来,深度学习在各个领域都取得了巨大的成功[6-12]。因为卷积神经网络(cnn)可以

自动学习图像特征并具有较强的特征表示能力,许多研究人员也开始将cnn应用于医学图像分割,并取得了很大的突破[13-24]。Lee等人[25]提出了一种多尺度网格平均池通道关注模块,该模块能够同时利用全局空间信息和局部空间信息对乳腺病变组织进行分割。Li等[26]提出了一种基于多尺度融合的深度学习框架,用于分割不规则和模糊的乳腺病变,克服了乳腺病变大小变化较大带来的分割困难。Tang等人[27]提出了一种结合变换模式集成学习(TMEL)的特征金字塔非局部网络(FPNN)用于超声图像中乳腺肿瘤分割,该方法可以融合考虑远距离依赖的多层次特征。Xue等人[[28]]认为cnn中的卷积运算通常集中在局部狭窄的区域,这会导致乳腺肿瘤分割的准确性降低,因此提出了一种以多层集成特征映射作为指导信息,从空间域和通道域学习长距离依赖关系的乳腺肿瘤分割网络。

Zhu等人[29]在分割网络的编码器阶段引入了一个关注加权的子区域池化模块,该模块通过聚合来自整个图像的全局特征和来自子区域的局部信息来细化特征。然而,这些方法大多侧重于如何更有效地整合上下文信息或提取多尺度信息,从而低估或忽视了特征信息在分割任务中辅助目标边界识别的重要性。边界特征信息的丢失容易导致网络在生成最终预测图时目标边界的不连续或不准确,从而导致网络的过分割或欠分割。

为了解决上述问题,本文提出了一种新的神经网络——反馈细化边界网络(FRBNet),该网络利用反馈机制来细化和约束乳腺肿瘤边界。本文针对乳腺肿瘤在超声图像中大规模变化的困难,我们的网络采用选择性核网络(SKNet)[30]作为特征提取模块,利用通道关注机制,通过选择性地聚合来自不同感知场大小的两个分支的特征,动态调整网络的感知场,以适应不同大小的肿瘤需要不同的感知场。FRBNet结构包括三个主要模块:通道校准模块(CCM)、边界检测模块(BD)和反馈细化模块(FRM)。具体而言,CCM在融合低级特征图和高级特征图之前,首先利用通道注意机制抑制低级特征图中携带噪声的通道,加强包含目标信息的通道,实现平滑融合,从而为高级语义特征图添加丰富的空间信息,同时避免引入大量噪声。将BD模块嵌入到浅层特征图中,额外学习乳腺肿瘤的边界图,为反馈系统中的FRM提供高质量的边界信息。FRM通过反馈机制接收来自BD模块的乳腺肿瘤边界图和最后一个解码器模块生成的粗预测图,然后生成最终的预测图。此外,将粗预测图与包含目标边界信息的特征图进行互补融合,为后续的高质量边界分割结果奠定基础。在损失函数部分,本文采用了一种混合损失函数,可以对系统产生更多的监督

从而实现对乳腺肿瘤边界的较好约束(在分割网络中,损失函数的作用非常重要,它用于衡量模型预测与实际分割目标之间的差异。损失函数有助于网络学习如何准确地分割图像,因为通过最小化损失,网络可以逐渐调整其参数以提高预测的准确性。)。我们的实验结果表明,我们的网络可以产生比其他最先进的方法更准确的乳腺肿瘤边界分割结果。综上所述,我们的贡献如下:

1.我们设计了嵌入在浅层的BD模块,有效提取边界信息,为更好的分割预测提供补充信息。

2. 我们构建了一个CCM,该CCM可以有效地抑制底层特征图中携带噪声的信道,从而降低了高层语义特征图中噪声信息的比例权重,降低了网络将背景误分类为前景的可能性。

3.我们提出FRM,有效利用BD模块提取的边界信息,在粗预测图中对乳腺肿瘤的边界进行细化和调整,使网络得到具有高质量边界的分割结果。

4. 在乳腺超声图像(Breast Ultrasound Images, BUSI)数据集上,对本文提出的三个模块进行了消融实验,验证了三个模块的有效性。此外,我们还将我们的网络与目前最先进的方法进行了比较,实验结果表明,我们的FRBNet对边界和细节信息敏感,可以有效地提取乳腺病变特征,准确分割乳腺肿瘤区域。

2 反馈细化边界网络

从BUSI中分割乳腺肿瘤是一项具有挑战性的任务,因为在类别之间存在微不足道的颜色强度变化和模糊的乳腺肿瘤边界。直接使用普通的编解码结构进行分割往往不能达到令人满意的效果。为了充分利用各种有利因素,如边界细节,以了解更多的鉴别乳房x线照片特征,我们提出了FRBNet。以下小节详细描述了所提出方法的细节,并举例说明了FRBNet中的各种新模块。

2.1. 方法概述

图2展示了开发的网络架构(即FRBNet),它可以被认为是基于编解码结构的网络的增强版本。具体来说,在编码器阶段,我们的网络使用SKNet[30]作为特征提取模块,命名为SKBlocki, i∈{1,2,3,4,5}。SKBlock利用通道注意机制自适应聚合两个不同感受野大小的特征图中的特征信息,从而达到识别不同大小的乳腺肿瘤需要不同感受野的目的,可以有效解决乳腺肿瘤大小变化较大的问题。解码器分四层,每层由一个解码器模块和CCM组成。其中,每一层通过引入CCM模块,选择性地将低级特征映射与高级特征映射融合,并将融合后的特征映射发送到相邻的解码器模块进行深度编码。受残差网络(ResNet)[7]的启发,每个解码器模块由两个具有残差连接的卷积批归一化整流线性单元(convbn - relu)块结构组成。我们将监督信号应用到最后一个解码器模块(即。

Decoder1)得到一个粗略的预测图,与地面真值相比,该预测图在肿瘤边界上不够精细,因此下一步是将该粗略预测图发送给反馈系统中的FRM,进一步细化乳腺肿瘤边界。具体而言,将BD模块嵌入到浅层CNN中,利用底层特征图中包含的丰富空间和纹理信息捕获乳腺肿瘤的边界轮廓,并将预测生成的乳腺边界发送到反馈系统与粗预测图互补融合,为实现后续的精细分割提供有利线索。我们的反馈系统由四个主要FRM (FRMi, i∈{1,2,3,4})组成,每个FRM使用最后一个解码模块生成的粗预测图和与FRM在同一层的BD模块生成的输出作为输入,实现互补融合,生成精细化的特征图。然后,我们使用深度监督机制[31,32],将监督信号应用于FRM的每一层,得到分割图,对每一层的分割图进行平均,得到最终的乳腺肿瘤分割结果。

图2所示。提出的反馈细化边界网络(FRBNet)概述。FRBNet的结构是一种增强的编码器-解码器网络,其中我们使用选择性核网络(SKNet)作为编码器阶段的特征提取模块。(i)在解码器的每一层,信道校准模块(CCM)平滑融合低级特征图和高级特征图,并将融合结果发送到相邻的解码器块进行深度解码。(ii)在每个浅卷积神经网络(CNN)中嵌入乳腺肿瘤边界检测(BD)模块,对乳腺肿瘤边界进行检测,并将预测的边界图发送到反馈系统中的反馈细化模块(FRM)进行进一步的工作。(iii)反馈系统中的FRM可以使用BD模块预测的乳腺肿瘤边界来细化粗预测图。(iv)对FRM各模块对应的分支应用深度监督机制,得到分割结果,对各层的分割图进行平均,得到最终的乳腺肿瘤分割结果。

2.2. 通道校准模块(CCM)

CCM被设计为一种通道注意力融合方案,用于挖掘底层特征映射中更有价值的通道。具体方法是利用通道注意机制抑制底层特征图中的噪声通道,增强包含目标关键信息的通道,实现平滑融合的目的,从而在为高层语义特征图补充丰富空间信息的同时,也达到减少噪声引入的目的。

如图3所示,我们的CCM使用低级特征图Flow∈RC×H×W和高级特征图Fhigh∈RC×H×W作为输入。首先逐单元对Flow和Fhigh求和,然后对Conv + BN + ReLU求Fsum。为了给Fsum的信道重新分配权值,我们首先对信道进行压缩[21],然后通过f层多层感知器(MLP)调整参数得到w,最终的Fout由下式得到。

式中,fconv表示参数为θ的Conv + BN + ReLU, MLPf表示f层的MLP。⊕和⊗分别表示元素和和积。

                        图3所示。提出的通道校准模块(CCM)的结构。

2.3. 边界检测(BD)模块

一些研究[33-35]表明,物体边缘的特征信息有助于网络更准确地识别物体形状,边缘检测为语义分割提供了强大的补充信息。因为浅层特征图是丰富的在边缘轮廓信息中,它们适合于预测乳腺肿瘤的边界。因此,我们将BD模块嵌入到编码器的前四层(即SKBlocki=1−4);但是考虑到SKBlock5丢失了太多的空间信息,我们没有嵌入BD模块。我们通过在BD模块中附加一个额外的边界预测损失函数来增强分割结果。图4为CNN第i层BD模块用于乳腺肿瘤边界检测的示意图。它将第i个编码模块SKBlocki (i=1,2,3,4)的输出通过插值上采样到原始地图大小后作为输入,并记录为Fin(i)。

                                                        图4所示。提出的边界检测(BD)模块结构。

首先,我们使用3 × 3卷积和1 × 1卷积减少输入特征映射(即Fin(i))中的通道数以匹配像素类别数得到Fφ(i),然后使用拉普拉斯算子的卷积[10,35]得到预测的乳腺肿瘤边界图F∂(i)。我们还对标签应用相同的拉普拉斯算子来获得真地边界映射(记为Fbd),并计算F∂(i)和Fbd之间相应的损失值Libd;参见3.4节了解更多细节。最后,F∂(i)将被发送到反馈系统的FRM进行进一步的工作。

2.4. 反馈细化模块(FRM)

在医学图像分割任务中,由于乳腺肿瘤超声成像的边界模糊和不连续,无法直接从解码器最后一个模块生成的特征映射的分割图像中获得最佳的分割效果。

为了解决这个问题,受f3net[32]的启发,我们提出了一个反馈系统。反馈系统中的FRM利用BD模块提取的边界特征信息对粗预测图进行微调,实现信息互补,从而获得更精细的分割。

如图所示,FRM有两个输入f粗和F∂(i)。其中,Fcoarse表示解码器在监督下的最后一个模块生成的粗分割图,F∂(i)表示包含第i个BD模块提取的目标边界纹理特征信息的特征图。为了充分利用Fcoarse和F∂(i)中所携带的互补信息,FRM中的两个分支将它们融合,分别通过串联和元素求和两种方式得到F(1)coarse和F(1)∂(i)。然后,对F(1)粗和F(1)∂(i)进行3 × 3卷积,通过元素求和得到卷积后的结果为Fout(i)。这个过程可以描述如下:

其中conv表示3 × 3卷积,θ(1)粗和θ(1)∂(i)是对应的卷积参数,sum表示元素求和。

                                图5所示。反馈细化模块(FRM)的示意图。        

3.实验

3.1. 数据集

我们在一个公共数据集BUSI[36]上评估我们的网络的性能。BUSI收集了600名女性患者780张图像,其中良性肿块437张,良性肿块210张,正常肿块133张。

在实际临床应用中,临床医生通过对病变组织的评估来确定病变的严重程度,并提供后续治疗方案。因此,我们采用与[28,37]相同的方案,剔除无乳腺病变的正常病例,形成基线数据集。

3.2. 实现细节

所提出的语义分割方法基于公共深度学习平台PyTorch [38] 和具有48 GB内存的NVIDIA GeForce RTX A6000。我们使用'poly'学习率策略,其中lr = baselr × (1 - iter / iter_max)^power,基本学习率baselr设置为0.001,power设置为0.9。批量大小和纪元值分别设置为8和300。此外,采用随机梯度下降(SGD)来优化我们的模型,其中动量和权重衰减分别设置为0.9和0.0005。为了避免由于可训练样本数量有限而导致的过拟合,我们在训练阶段采用一系列数据增强策略,包括水平翻转、垂直翻转、缩放、随机裁剪、高斯噪声和随机旋转,以生成更多的样本

3.3. 评价指标

为了进行公平和系统的比较,使用Dice分数和Jaccard指数来评估分割性能。其他评价指标,如准确性(Acc)、召回率(recall)、特异性(Spe)和精密度(Pre)也被计算用于综合评估。这些指标可以通过以下方式获得:

其中TP、TN、FP、FN分别为真阳性、真阴性、假阳性、假阴性。

3.4. 损失函数

如图4所示,我们在CNN的浅层中加入BD模块,并从中检测边界图,因此我们的网络在4个CNN层上生成4个边界图。同时,我们还将监督信号应用于四种FRMs,得到四种分割结果。

此外,还对最后一个解码模块进行监督,生成粗预测图。最后,我们计算网络的总损耗为:

其中,Nlayer是CNN层的数量,我们在实现中经验性地将Nlayer设置为四。Lbd和Liseg分别表示我们网络中的边界损失和分割损失。Lcoarseseg是在监督下由解码器的最后模块生成的粗略预测图的损失函数。w1和w2是旨在平衡Lbd和Liseg的权重因子,它们的值经验性地设置为w1 = 1和w2 = 1。

为了处理超声图像中极不平衡的类分布,提高网络对错误分类的惩罚,Liseg被设计成由二进制交叉熵(BCE)损失和Dice损失[39]组成的混合分割损失函数。BCE在像素级别惩罚分类错误,Dice损失函数从全局角度评估网络性能。

其中,Pi表示第i层预测的乳腺肿瘤分割结果,(Pi)j表示Pi的第j个像素。Yj∈{0,1}表示第j个像素的真值标签,其中1表示正类对应的像素,0表示负类对应的像素。N表示输入图像的总像素数。

Libd计算为预测的乳腺肿瘤边界图(Bi)与拉普拉斯算子得到的地真边界图(G)之间的BCE损失。

式中(Bi)j和Gj分别表示Bi和G的第j个像素,N表示Bi的像素号。

此外,继Liseg之后,Lcoarseseg也将BCE和Dice系数损失结合起来。设C表示解码器最后一个模块生成的粗预测图和地面真值(记为Y)。

其中Cj和Yj分别表示C和Y的第j个像素。N是C中的像素数。

4. 结果与讨论

在本节中,我们进行消融研究和对比实验来验证所提出的FRBNet的有效性。首先,我们通过消融研究来探索本文提出的组件的有效性。最后,将该方法与其他具有代表性的语义分割方法进行了比较。

4.1. 超参数f的影响

超参数f表示CCM中MLP中完全连接层的数量,用于计算一组向量权值,将权值重新分配给底层特征映射中的通道。换句话说,CCM抑制噪声信道和增强编码器和解码器之间语义相关性的能力是由超参数f决定的。因此,为了验证超参数f对CCM的影响,我们设计了一组烧蚀实验来探索不同f值对网络性能的影响。

如表1所示,我们设置了三个不同的f值1、2和3来评估网络性能。值得注意的是,当f从1增加到2时,Jaccard和Dice的值分别显著增加了2.52%和1.96%。继续增大f,网络的性能不会进一步提高,而是呈下降趋势。我们认为,当f = 2时,MLP足以利用来自低级特征映射和融合后的高级特征映射的全局通道信息来为低级特征映射中的通道重新分配权重。因此,两层MLP提取的有用特征已经饱和,使用单层MLP可能会稀释判别特征,而网络趋于使用三层MLP进行超学习。因此,在CCM模块中,我们将超参数f设置为2。

表1 CCM中不同超参数f对网络性能影响的定量比较。

4.2. 融合方法的影响

在FRM中,融合方法的选择决定了网络在两个携带互补信息的特征映射f粗和F∂(i)之间保留信息的能力。为此,我们使用一组烧蚀实验来探索不同融合方法对FRM中网络性能的影响。结果如表2所示。当仅使用元素求和进行融合时,网络的性能并不令人满意,并且在Jaccard和Dice指标上都略低于使用连接的融合方法。我们推测这种差异的原因是直接通过元素求和的融合使网络与特征映射中的判别特征混淆。当FRM同时使用两种融合模式时,网络的分割性能最好。

4.3. 我们的FRBNet烧蚀分析

在本节中,为了验证所提出的FRBNet中组件的有效性,我们通过烧蚀研究探讨了CCM、BD模块和FRM对网络性能的影响。基线(即表3的第一行)是通过从FRBNet的基础上移除CCM、BD模块和FRM形成的。然后,我们在基线的基础上逐步添加CCM、BD和FRM,探索每个模块的有效性,分别表示为baseline + CCM、baseline + CCM + BD和baseline + CCM + BD + FRM(即our)。如表3所示,加入CCM后,Dice得分从78.42%提高到79.86%,这证明在编解码结构中使用跳接时,如果提前利用信道注意机制抑制底层特征图中携带噪声的信道,可以提高网络的性能。继续在基线+ CCM中添加BD模块,Dice得分绝对提高了1.93%,继续添加FRM, Dice得分提高了1.61%,达到83.40%。

图6直观地比较了基线、“baseline + CCM”、“baseline + CCM + BD”和我们的方法(i。

即基线+ CCM + BD + FRM)消融实验。视觉结果很容易表明,由基线产生的分割结果包含相当大的噪声,误分类大量的肿瘤区域作为背景;我们推测其原因是在基线结构中,底层特征图的通道中含有大量背景噪声等干扰信息,当底层特征图通过跳过连接直接融合到高层特征图时,很容易增加与分割目标无关的高层特征图中干扰信息的比例权重;从而导致网络将前景误判为背景。加入CCM后,利用通道注意机制抑制底层特征映射中的噪声通道,可以有效避免这种情况,如图6 d列所示。此外,如图6 e列所示,Baseline + CCM + BD网络比Baseline + CCM网络能更准确地检测乳腺肿瘤边界。结果表明,该方法通过添加BD模块生成精细边界,可以进一步提高分割质量。最后,如f列所示,加入FRM后,无论是在目标定位上还是在边界处理能力上,网络的分割都得到了进一步的提高。此外,FRM可以利用BD模块提取的边界特征信息对粗预测图进行微调,提高乳腺肿瘤的分割性能。

4.4. 通道校准可视化

为了直观地显示我们提出的CCM的影响,我们将其可视化

烧蚀实验构建的“Baseline + CCM”网络和本文提出的FRBNet经过第一次CCM处理后的特征响应变化。如图7中的c和e所示,编码器阶段的特征映射在输入CCM之前携带了相当多的不相关信息,网络对噪声区域给予了较大的权重,导致与目标不相关的特征被错误激活。这种情况在CCM处理后得到有效抑制。如图7中的d和f所示,网络将更多的注意力重新分配到目标上,目标轮廓和位置信息变得清晰。这种变化有利于网络在编码器阶段进一步提取更多的判别特征,从而实现准确的分割。

表2 FRM中不同融合模式对网络性能影响的定量比较。

表3消融研究中基于BUSI数据集构建的所有网络的定量结果。第一行为基线,在FRBNet的基础上去掉CCM、BD模块和FRM形成基线。逐步增加CCM、BD和FRM,探索各组成部分的有效性。

烧蚀实验构建的“Baseline + CCM”网络和本文提出的FRBNet经过第一次CCM处理后的特征响应变化。如图7中的c和e所示,编码器阶段的特征映射在输入CCM之前携带了相当多的不相关信息,网络对噪声区域给予了较大的权重,导致与目标不相关的特征被错误激活。这种情况在CCM处理后得到有效抑制。如图7中的d和f所示,网络将更多的注意力重新分配到目标上,目标轮廓和位置信息变得清晰。这种变化有利于网络在编码器阶段进一步提取更多的判别特征,从而实现准确的分割。

4.5. 与艺术的比较

在本节中,为了更客观地评估我们的FRBNet的有效性,我们将我们的网络与几种最先进的语义分割网络进行了比较,例如u形网络(U-Net) [13], U-Net+[14],金字塔场景解析网络(PSPNet)[40],双注意网络(DANet) [41], DeepLabV3+[42],上下文编码器网络(CENet)[15],选择性内核U-Net (SKUNet)[43]和多级上下文细化(MCRNet)[37]。为了进行公平的比较,所有这些方法和本文使用相同的数据增强方法和优化器参数设置。

表4报告了我们的方法和其他最先进的方法在BUSI数据集的七个评估指标下的平均值。

从表4中不难看出,U-Net[13]和SKUNet[43]在Dice评价指标上的分割性能并不令人满意,这也说明普通编解码结构难以应用于超声乳腺肿瘤分割任务。此外,CENet[15]的Dice得分比U-Net提高了1.69%,这是由于该网络融合了DAC (dense atrous convolution)块和残差多核池(residual multi-kernel pooling, RMP),使得该网络能够捕获更多高级信息并保留空间信息。结果表明,我们的方法比其他分割方法具有更大的Jaccard, Dice, Recall和Per值。这表明我们的FRBNet可以比其他竞争对手更准确地从超声图像中识别乳腺肿瘤。

表5报告了加入正常病例后各方法的结果。

根据结果,我们可以很容易地确定,在加入正常情况后,所有竞争对手和我们网络的定量结果都变差了。这是因为所有的网络模型都是为了捕获前景区域而设计的,在正常情况下没有正样本在训练过程中向网络提供正反馈。另一方面,向数据集中添加正常情况会增加数据集中负样本的比例。尽管如此,我们的网络实现了最好的Jaccard, Dice, Recall和Pre值

两种方法的阳性率分别为59.61%、67.04%、68.55%和67.65%。

我们还直观地比较了我们的网络和其他方法产生的乳腺肿瘤分割结果。如图所示,U-Net、U-Net++、DANet、CENet和SKUNet在其预测的分割图中往往忽略乳腺肿瘤的细节或错误地将未病变区域划分为乳腺肿瘤,而我们的方法对乳腺肿瘤区域的分割结果更为准确。而且,如图8的c列所示,我们的结果是所有分割结果中与ground truth最一致的。

图6所示。消融研究的目视结果。(a)输入图像。(b)事实。(c) - (f)分别显示由基线“基线+ CCM”、“基线+ CCM + BD”和我们的(即“基线+ CCM + BD + FRM”)产生的分割。

图7所示。特征响应可视化。(a)和(b)分别为输入图像和地面真值。(c)和(d)分别为Baseline + CCM网络输入CCM前后的特征响应对比。(e)和(f)分别表示在FRBNet中输入CCM前后的特征响应对比。

表4我们的方法(FRBNet)与BUSI数据集上最先进的乳腺肿瘤分割方法的比较。最好的结果用粗体标记。

表5在BUSI数据集上,我们的方法与其他乳腺肿瘤分割方法的比较。(包括正常情况)。

4.6. 网络灵敏度测试

在二值医学图像分割任务中[31,43 - 49],我们通常使用sigmoid函数对网络最后一层的输出进行归一化,使其在0到1之间。然后使用阈值(记为T)来确定预测图中的特定位置是属于前景还是背景,经验上,T通常设置为0.5。T的值表示网络对前景和背景的敏感性。因此,在本节中,我们测试不同阈值下所有网络的Dice值并记录下来,观察网络对不同阈值的敏感性。如图9所示,我们的网络在不同阈值下的Dice值都是最高的,这表明我们提出的方法更加有效比其他方法更有竞争力。

图8所示。不同方法生成的乳腺病变分割图的视觉比较。(a)输入乳房超声图像。(b)事实。(c) - (k)分别为我们的方法U-Net、U-Net++、PSPNet、DANet、DeepLabV3+、CENet、SKUNet和MCRNet的分割结果。我们提出的方法始终产生最接近地面真相的分割结果。

5. 结论

在乳腺肿瘤分割任务中,一些目标具有模糊和不规则的边界。大多数乳腺肿瘤分割方法侧重于更有效地整合上下文信息或提取多尺度信息,而低估或忽视了在分割任务中有助于识别目标边界的特征信息的重要性。边界特征信息的丢失容易导致网络在生成最终预测图时目标边界的不连续或不准确,从而导致网络的过分割或欠分割。

针对上述问题,提出了一种基于BD的反馈细化神经网络(FRBNet)用于超声乳腺肿瘤分割。BD模块通过嵌入在浅层来捕获更多关于乳腺肿瘤边界的信息,从而帮助网络提高分割性能。然后,设计CCM对底层特征图中含有噪声的通道进行抑制,对承载目标信息的通道进行强化,降低高层语义特征图中干扰噪声的比例权重。最后,FRM利用BD模块提取的互补信息对粗预测特征图中的特征映射进行微调。通过对这三个模块的整合,我们与公共数据集上最先进的方法进行了比较,实验结果表明,我们的网络可以比所有竞争对手更准确地分割乳腺肿瘤区域。

图9 . .不同阈值下的骰子值。红色虚线表示我们的模型,其他线表示剩余的模型。曲线越高越平坦,模型越好。

  • 5
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值