摘要:本文主要运用数理统计的知识对机械零件加工中的加工精度进行了相关析,举例进行了机械加工零件尺寸数据的假设检验、参数估计分析,利用机械零件加工中的切削用量三要素设计了正交试验,并以45钢高速切削为例研究了切削用量三要素与零件精度之间的回归关系,通过上述过程深刻体会了机械工程领域的数理统计应用方法。
关键词:假设检验、参数估计、正交分析、回归分析、尺寸精度
目录
1.引言
提高加工质量和生产率,降低废品率和加工成本,对制造过程质量的实时监视、控制和保障技术的研究非常重要。机械加工尺寸精度是衡量加工效果好坏、加工工艺优劣的重要指标,某项加工工艺及其产品进行抽检并做出统计学分析非常重要。由于机械产品加工的工艺过程是一个复杂的系统,影响加工精度的因素很多,尤其是一些无规律的随机因素无法进行单独分析,因此需要应用数理统计的方法进行研究,从而获得一些符合实际情况的结论。
为了熟悉数理统计方法在机械加工精度评价中的应用方法,本文主要研究了机械零件加工精度中的非参数假设检验、参数假设检验、参数估计、加工精度影响因素的正交分析及其回归分析。
2.加工精度的假设检验及参数估计
如下表所示数据为某机床某项加工所获得的100个零件尺寸数据,其标准尺寸要求为15.02mm,尺寸的测量由两个人共同完成,即一人测了一半的数据,数据如下表1和表2所示(数据来源于:机械加工精度统计分析实验报告 - 豆丁网
表 1 第1个工作人员的读数
零件加工尺寸读数(单位:mm) | |||||||||
15.0295 | 15.0075 | 15.0275 | 15.018 | 15.0245 | 15.0175 | 15.024 | 15.0155 | 15.023 | 15.0155 |
15.023 | 15.0185 | 15.0285 | 15.0155 | 15.0225 | 15.019 | 15.0295 | 15.014 | 15.0285 | 15.011 |
15.024 | 15.015 | 15.0325 | 15.014 | 15.0185 | 15.0045 | 15.014 | 15.0155 | 15.0135 | 15.0175 |
15.0205 | 15.0145 | 15.015 | 15.0145 | 15.0245 | 15.014 | 15.0265 | 15.0185 | 15.0205 | 15.015 |
15.017 | 15.0165 | 15.0225 | 15.0165 | 15.019 | 15.0135 | 15.018 | 15.01 | 15.022 | 15.0095 |
表 2 第2个工作人员的读数
零件加工尺寸读数(单位:mm) | |||||||||
15.0275 | 15.019 | 15.0225 | 15.0045 | 15.0195 | 15.0125 | 15.015 | 15.012 | 15.0135 | 15.012 |
15.0205 | 15.013 | 15.0195 | 15.027 | 15.0195 | 15.0125 | 15.0225 | 15.017 | 15.022 | 15.013 |
15.0195 | 15.0055 | 15.0205 | 15.0125 | 15.0155 | 15.0145 | 15.02 | 15.0055 | 15.0155 | 15.014 |
15.0195 | 15.0075 | 15.019 | 15.019 | 15.02 | 15.017 | 15.0175 | 15.0095 | 15.0195 | 15.0205 |
15.0095 | 15.015 | 15.018 | 15.225 | 15.0135 | 15.215 | 15.0115 | 15.0145 | 15.0155 | 15.0105 |
2.1非参数假设检验
由概率论知识可知,机械加工中若是由许多相互独立的随机误差综合作用,且其中没有一个有显著优势的误差因素,则加工后的工件尺寸呈正态分布[1]。因此,对于上述机床加工零件,可以通过其100件零件尺寸数据对上述结论进行一个验证。
首先设所测得的尺寸数据为X,因此可以知道原假设H0如下:
| (1) |
由于和未知,因此以和替换。再把X的可能取值在分为8个子区间。
| (2) | |
| (3) |
将上表1和表2按上述分组方式可以得到如下表3。
表 3 加工尺寸数据组限表
组限 | 15.0045~15.008 | 15.008~15.0115 | 15.0115~15.015 | 15.015~15.0185 | |||||
频数 | 6 | 7 | 25 | 21 | |||||
组限 | 15.0185~15.022 | 15.022~15.0255 | 15.0255~15.029 | 15.029~15.325 | |||||
频数 | 21 | 11 | 6 | 3 |
由拟合检验原理可知,在H0成立下,如下统计量会服从卡方分布:
| (4) |
并且可以知道事件H0的拒绝域为:
| (5) |
由正态分布基础知识可知:
| (6) |
的计算需要用到参考文献[5]的附表1(标准正态分布表),当假设H0成立时分别计算各组理论频数
和实际频数
,可以计算得到如下表4。
表 4 正态分布的卡方拟合检验计算表
序号 | 分组 | | ||||
1 | 15.0045~15.008 | 6 | 0.0376 | 3.76 | 2.24 | 1.334 |
2 | 15.008~15.0115 | 7 | 0.102 | 10.2 | -3.20 | 1.004 |
3 | 15.0115~15.015 | 25 | 0.1857 | 18.57 | 6.43 | 2.226 |
4 | 15.015~15.0185 | 21 | 0.2421 | 24.21 | -3.21 | 0.426 |
5 | 15.0185~15.022 | 21 | 0.2117 | 21.17 | -0.17 | 0.001 |
6 | 15.022~15.0255 | 11 | 0.1326 | 13.26 | -2.26 | 0.385 |
7 | 15.0255~15.029 | 6 | 0.0557 | 5.57 | 1.76 | 1.850 |
8 | 15.029~15.325 | 3 | 0.0167 | 1.67 |
由上表可知,本检验中的各数据如下:
| (7) | |
|
假设显著水平,查表可知:
| ||
|
所以在显著性水平为0.05的情况下可以接受H0,认为所测得的尺寸数据X服从正态分布。
2.2检验两人读数的差异
由于表1和表2数据分别由不同的人读取,所以检验两人读数是否有显著性差异也很重要,由于该工件测量处尺寸标准值为15.02mm,设两个读数分别为X和Y,因此可以得到以下内容:
| (8) |
因此,问题转化为对两人测量数据的方差是否有显著性差异进行检验。
| (9) |
由上述内容可以知道两人的测量数量n1=n2=50,并且,由卡方分布的性质可以知道(9)式,进而可以得到(10)式:
| (10) | |
| (11) |
在给定显著性水平的情况下,其拒绝域如下式(11):
| (12) |
通过计算可以知道:
|
通过参考文献[5]附表5(F分布上侧分位数表)查得:
|
所以:
| (13) |
因此接受原假设H0可以认为两人测量数据没有显著性差异。
2.3方差的置信区间
对于上述测量值,其均值应该为,因此本小节需要确定在上述测量结果中,
的置信区间(假设置信度为0.95,双侧区间估计)。由于卡方分布上侧分位数表最大到n=50,且上一小节已经证明两人数据没有明显差异,所以取第一个人的数据进行本小节计算,故n=50,取α=0.05。
由正态分布及卡方分布性质可以构造如下枢轴量:
| (14) |
所以:
| (15) | |
| (16) |
通过参考文献[5]附表4(卡方分布上侧分位数表)查表可得:
|
因此可以通过计算得到,在标准值情况下,
置信度为95%的置信区间为:
|
通过上述内容的计算验证,可以发现,在此次加工所测量的数据中,其在读书上的波动非常的小,证明了机车加工精度是正常的,其加工的尺寸在很小的波动范围内服从正态分布,并且两人读数没有明显的差异。数据分布的直观图示如下图1所示。
图 1 加工尺寸数据分布图
3.切削加工三要素对精度影响的正交分析
在机械零部件的切削加工中,切削速度、背吃刀量和进给量被称为切削用量三要素,在精加工一个工步中,其大小选择直接影响整体工件的精度,因此,研究它们对工件精度影响的深层次逻辑非常重要。参考文献[2]中在粗加工切削用量三要素对加工时间影响的正交试验方法能够直接的适用于文献[3]中的加工精度数据,其包括切削用量三要素三个因素,每个因素均取2水平,共获得4组实验数据(偏差绝对值):0.019mm、0.0203mm、0.021mm、0.0227mm。所以正交表选择。设各因素代号如下:
|
其中各因素水平如下:
因素 水平 | 切削速度 | 背吃刀量 | 进给量 |
1 | 600r/min | 0.2mm | 0.03mm/r |
2 | 800r/min | 1.2mm | 0.08mm/r |
其中正交表如下所示:
表 5 切削用量三要素正交表
列号 试验号 | A | B | C | yi(偏差绝对值) |
1 | 1 | 1 | 1 | 0.019mm |
2 | 1 | 2 | 2 | 0.0203mm |
3 | 2 | 1 | 2 | 0.021mm |
4 | 2 | 2 | 1 | 0.0227mm |
T1j | 0.0393 | 0.04 | 0.0417 | |
T2j | 0.0437 | 0.043 | 0.0413 | |
Rj | 0.0044 | 0.003 | 0.0004 |
上述指标内容为偏差绝对值,因此其越小越好。对上述结果做直接分析可以知道,各因素重要性排序为ABC,因此在此项加工中应该选择A1B1C2,即:切削速度600r/min,背吃刀量0.2mm,进给量0.08mm/r。
4. 45钢高速铣削中的表面粗糙度影响分析
高速铣削加工中,工件的表面粗糙度既是评价工件加工质量的重要指标,也是机械零件实现其使用性能的重要技术要求。表面粗糙度对零件的疲劳强度、接触刚度、耐腐蚀性能等有很大的影响。因此,在实际铣削加工前,根据铣削参数等因素对加工工件的表面粗糙度进行预测不仅能够减少加工时间、降低成本,同时为铣削参数的选择和表面质量的控制提供依据,对实际生产具有重要的应用价值。文献[4]通过相关4因素5水平正交实验获得了如下表7所示的45钢高速切削影响因素及其对于水平下表面粗糙度的30组数据。实验中的实验因素及其水平表如下表6所示。
表 6 实验因素及水平
影响因素 | 因素水平 | ||||
工件硬度/HRC | 30 | 40 | 50 | 55 | 60 |
切削速度/(m/min) | 150 | 250 | 300 | 350 | 400 |
进给量/(mm/r) | 0.02 | 0.04 | 0.06 | 0.08 | 0.10 |
切削深度/(mm) | 0.02 | 0.04 | 0.06 | 0.08 | 0.10 |
表 7 45钢高速切削影响因素及其表面粗糙度
编号 | 工件硬度/HRC | 切削速度/(r/min) | 进给量/(mm/r) | 切削深度/(mm) | 表面粗糙度/(μm) |
1 | 30 | 2388 | 0.02 | 0.02 | 0.194 |
2 | 30 | 3978 | 0.04 | 0.04 | 0.222 |
3 | 30 | 4774 | 0.06 | 0.06 | 0.436 |
4 | 30 | 5570 | 0.08 | 0.08 | 0.507 |
5 | 30 | 6636 | 0.1 | 0.1 | 0.512 |
6 | 40 | 2388 | 0.04 | 0.06 | 0.320 |
7 | 40 | 3978 | 0.06 | 0.08 | 0.370 |
8 | 40 | 4774 | 0.08 | 0.1 | 0.522 |
9 | 40 | 5570 | 0.1 | 0.02 | 0.590 |
10 | 40 | 6636 | 0.02 | 0.04 | 0.290 |
11 | 50 | 2388 | 0.06 | 0.1 | 0.8025 |
12 | 50 | 3978 | 0.08 | 0.02 | 0.7275 |
13 | 50 | 4774 | 0.1 | 0.04 | 0.725 |
14 | 50 | 5570 | 0.02 | 0.06 | 0.424 |
15 | 50 | 6636 | 0.04 | 0.08 | 0.495 |
16 | 55 | 2388 | 0.08 | 0.04 | 0.7333 |
17 | 55 | 3978 | 0.1 | 0.06 | 0.9333 |
18 | 55 | 4774 | 0.02 | 0.08 | 0.444 |
19 | 55 | 5570 | 0.04 | 0.1 | 0.45 |
20 | 55 | 6636 | 0.06 | 0.02 | 0.324 |
21 | 60 | 2388 | 0.1 | 0.08 | 0.9225 |
22 | 60 | 3978 | 0.02 | 0.1 | 0.5225 |
23 | 60 | 4774 | 0.04 | 0.02 | 0.54 |
24 | 60 | 5570 | 0.06 | 0.04 | 0.4025 |
25 | 60 | 6636 | 0.08 | 0.06 | 0.35 |
26 | 30 | 6366 | 0.08 | 0.1 | 0.437 |
27 | 40 | 5570 | 0.06 | 0.08 | 0.342 |
28 | 50 | 4774 | 0.1 | 0.06 | 0.76 |
29 | 55 | 3978 | 0.04 | 0.04 | 0.463 |
30 | 60 | 2388 | 0.02 | 0.02 | 0.403 |
4.1 45钢高速切削实验正交分析
为了研究各因素对45钢高速切削后的粗糙度的影响的重要性及显著性,可以利用上述数据进行正交分析,假设无交互作用情况,由于本实验为4因素5水平正交实验,因此可以选择正交表做正交分析,取表7中的前25组数据来分析。设工件硬度、切削速度、进给量、切削速度的符号表示依次为A、B、C、D,可以得到如下正交分析表8,只用前4列。
表 8 45钢高速切削正交实验表
列号 试验号 | 1(A) | 2(B) | 3(C) | 4(D) | 5 | 6 | yi(指标) |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.194 |
2 | 1 | 2 | 2 | 2 | 2 | 2 | 0.222 |
3 | 1 | 3 | 3 | 3 | 3 | 3 | 0.436 |
4 | 1 | 4 | 4 | 4 | 4 | 4 | 0.507 |
5 | 1 | 5 | 5 | 5 | 5 | 5 | 0.512 |
6 | 2 | 1 | 2 | 3 | 4 | 5 | 0.32 |
7 | 2 | 2 | 3 | 4 | 5 | 1 | 0.37 |
8 | 2 | 3 | 4 | 5 | 1 | 2 | 0.522 |
9 | 2 | 4 | 5 | 1 | 2 | 3 | 0.59 |
10 | 2 | 5 | 1 | 2 | 3 | 4 | 0.29 |
11 | 3 | 1 | 3 | 5 | 2 | 4 | 0.8025 |
12 | 3 | 2 | 4 | 1 | 3 | 5 | 0.7275 |
13 | 3 | 3 | 5 | 2 | 4 | 1 | 0.725 |
14 | 3 | 4 | 1 | 3 | 5 | 2 | 0.424 |
15 | 3 | 5 | 2 | 4 | 1 | 3 | 0.495 |
16 | 4 | 1 | 4 | 2 | 5 | 3 | 0.7333 |
17 | 4 | 2 | 5 | 3 | 1 | 4 | 0.9333 |
18 | 4 | 3 | 1 | 4 | 2 | 5 | 0.444 |
19 | 4 | 4 | 2 | 5 | 3 | 1 | 0.45 |
20 | 4 | 5 | 3 | 1 | 4 | 2 | 0.324 |
21 | 5 | 1 | 5 | 4 | 3 | 2 | 0.9225 |
22 | 5 | 2 | 1 | 5 | 4 | 3 | 0.5225 |
23 | 5 | 3 | 2 | 1 | 5 | 4 | 0.54 |
24 | 5 | 4 | 3 | 2 | 1 | 5 | 0.4025 |
25 | 5 | 5 | 4 | 3 | 2 | 1 | 0.35 |
T1j | 1.871 | 2.9723 | 1.8745 | 2.3755 | 2.5468 | 2.089 | |
T2j | 2.092 | 2.7753 | 2.027 | 2.3728 | 2.4085 | 2.4145 | |
T3j | 3.174 | 2.667 | 2.335 | 2.4633 | 2.826 | 2.7768 | |
T4j | 2.8846 | 2.3735 | 2.8398 | 2.7385 | 2.3985 | 3.0728 | |
T5j | 2.7375 | 1.971 | 3.6828 | 2.809 | 2.5793 | 2.406 | |
Rj | 1.303 | 1.0013 | 1.8083 | 0.4362 | 0.4275 | 0.9838 |
通过表8可以对45钢高速切削中的上述4个因素进行正交表的直观分析和方差分析。
直观分析:
上述指标为加工工件的表面粗糙度,因此其越小越好。由表8可知各因素的重要性顺序为CBAD,进一步从各因素水平中选择加工的参数搭配方案为:C1B4A1D2,即进给量0.02mm/r,切削速度350m/min,工件硬度30HRC,切削深度0.04mm。
方差分析:
首先,正交表方差分析中各离差平方和求解公式如下所示:
总离差平方和: | (17) | |
各因素差平方和: | (18) | |
误差离差平方和: | (19) |
QT的自由度为实验数减1,即24。各因素自由度均为其正交表中所在列水平数减1,即都是4。Qe的自由度为QT的自由度减去其余自由度,即8。将计算结果列如方差分析表可得如下表9。
表 9 方差分析表
方差来源 | 平方和 | 自由度 | 均方和 | F值 |
A | 0.24145557 | 4 | 0.06036389 | 13.86955435 |
B | 0.12183261 | 4 | 0.03045815 | 6.99824013 |
C | 0.42865151 | 4 | 0.10716288 | 24.62235796 |
D | 0.03439273 | 4 | 0.00859818 | 1.97556796 |
误差e | 0.13927228719999918 | 8 | 0.017409035899999897 | |
总和T | 0.9656047175999998 | 24 |
设各因素自由度由符号表示,误差自由度由符号
表示,由文献[5]可以知道:
| (20) |
若给定显著性水平α=0.01,查文献[5]附表5(F分布上侧分位数表)可以知道,F(4,8)=7.01。因此,通过对比可以知道,因素A(工件硬度)、C(进给量)对试验指标有显著性影响,因素B(切削速度)、D(切削深度)对试验指标无显著性影响。
通过以上方差分析可以知道,工件硬度和进给量影响表面粗糙度最为显著,通过综合两种分析方法可以知道,工件硬度对45钢高速切削后的表面粗糙度影响是最大的,因此在实际生产过程中应充分考虑工件应用场景,综合选择合适硬度的45钢进行加工。
4.2 45钢高速切削实验回归分析
为了能在实际加工中做出具有工程指导性,可以利用表7中的数据对表面粗糙度及其影响因素做回归分析。首先对各因素及表面粗糙度用变量表示如下:
工件硬度:h 进给量:x 切削速度:v 切削深度:d 表面粗糙度:f |
为了简化计算复杂度,只对每个因素做一次多项式回归,因此转化为线性回归模型可表达如下式:
| (21) |
为了验证回归模型的优劣,此处依然只取表7中前25个数据用于回归,取剩余数据用于验证。
根据参考文献[5]的5.2节内容,可知,此处k=4,n=25,由公式(22)可以计算得到系数bi。
| (22) |
可以知道:
X矩阵 | 1 | 30 | 2388 | 0.02 | 0.02 | Y向量 | 0.194 | |
1 | 30 | 3978 | 0.04 | 0.04 | 0.222 | |||
1 | 30 | 4774 | 0.06 | 0.06 | 0.436 | |||
1 | 30 | 5570 | 0.08 | 0.08 | 0.507 | |||
1 | 30 | 6636 | 0.1 | 0.1 | 0.512 | |||
1 | 40 | 2388 | 0.04 | 0.06 | 0.32 | |||
1 | 40 | 3978 | 0.06 | 0.08 | 0.37 | |||
1 | 40 | 4774 | 0.08 | 0.1 | 0.522 | |||
1 | 40 | 5570 | 0.1 | 0.02 | 0.59 | |||
1 | 40 | 6636 | 0.02 | 0.04 | 0.29 | |||
1 | 50 | 2388 | 0.06 | 0.1 | 0.8025 | |||
1 | 50 | 3978 | 0.08 | 0.02 | 0.7275 | |||
1 | 50 | 4774 | 0.1 | 0.04 | 0.725 | |||
1 | 50 | 5570 | 0.02 | 0.06 | 0.424 | |||
1 | 50 | 6636 | 0.04 | 0.08 | 0.495 | |||
1 | 55 | 2388 | 0.08 | 0.04 | 0.7333 | |||
1 | 55 | 3978 | 0.1 | 0.06 | 0.9333 | |||
1 | 55 | 4774 | 0.02 | 0.08 | 0.444 | |||
1 | 55 | 5570 | 0.04 | 0.1 | 0.45 | |||
1 | 55 | 6636 | 0.06 | 0.02 | 0.324 | |||
1 | 60 | 2388 | 0.1 | 0.08 | 0.9225 | |||
1 | 60 | 3978 | 0.02 | 0.1 | 0.5225 | |||
1 | 60 | 4774 | 0.04 | 0.02 | 0.54 | |||
1 | 60 | 5570 | 0.06 | 0.04 | 0.4025 | |||
1 | 60 | 6636 | 0.08 | 0.06 | 0.35 |
通过编程可以解得B的最小二乘估计,进而得到线性回归方程的矩阵表达式(23):
| ||
| (23) |
通过得到的线性回归模型对上述表7的26~30内容进行预测对比得到下表10。
表 10 预测结果对比
编号 类型 | 1 | 2 | 3 | 4 | 5 |
真实值 | 0.437 | 0.342 | 0.76 | 0.463 | 0.403 |
预测值 | 0.44217361 | 0.44078766 | 0.70516571 | 0.48912911 | 0.48708253 |
相对误差 | 0.01183891 | 0.28885281 | 0.07215038 | 0.05643437 | 0.20864151 |
通过上表10可以直观知道,此线性模型预测效果一般,文献[4]中使用了支持向量机(SVM)这种机器学习的方法来预测,其最最大误差为8.26%,明显小于本文这里的回归分析所获得的最大误差。因此,再检验一次本回归模型的线性回归显著性。
首先可以做出以下假设:
|
所以拒绝域为:
| (24) |
设此处显著性水平α=0.05,查文献[5]附表5(F分布上侧分位数表)可得:
|
可以得到回归显著性检验的方差分析表如下表11所示。
表 11 回归方程显著性方差分析表
方差来源 | 平方和 | 自由度 | 均方和 | F值 |
回归 | 0.69718 | 4 | 0.17429 | 12.98627 |
误差 | 0.26843 | 20 | 0.01342 | |
总和 | 0.96560 | 24 |
所以,拒绝H0,可以认为该四元一次线性回归方程显著。
上述结果中有几个系数数量级较小,因此再检验一下其系数是否显著为0,过程如下:
检验统计量:
| (25) |
其中:
| (26) |
cjj为C的主对角线上的元素,通过编程可以计算得到如下结果:
表 12 回归系数显著性检验表
tj | 0 | 1 | 2 | 3 | 4 |
值 | 0.23926123 | 3.48391466 | -2.88215453 | 5.40705476 | 1.50478087 |
原假设为:
|
拒绝域为:
| (27) |
设此处显著性水平α=0.05,查文献[5]附表3(t分布上侧分位数表)可得:
|
所以b1,b2,b3不显著为0,其余两项系数显著为0。
通过上述分析,比较清晰地说明了45钢高速切削过程各因素对其加工后表面粗糙度的影响效果的直观展示,对机械工程零件加工精度的监测与分析的统计学应用有了一定的理解。
5.总结
本文通过对某零件加工得到的100个尺寸数据以及45钢高速切削影响因素相关数据的研究,将机械工程领域的基本内容与数理统计知识相结合,在研究和计算的过程中切实做到了学以致用的要求。在本文的研究中,尚有部分内容可以深入,如第4节中的内容还可以扩展到预测估计值的相关置信度的区间估计。本文相关计算较为复杂,主要计算程序已经放于以下网址(编程及作业: 这是本学生的所以课程编程作业 - Gitee.com),读者可以自行参考。
6.致谢
本文的完成是在《应用数理统计》课程的基础上完成的,相关知识的学习虽然已经结束但是运用数理统计方法的工程问题源源不断,在此,需要感谢晁*和时*两位老师的辛勤付出,晁*老师温柔细致的讲解使我对数理统计相关基础知识有更好的掌握,时*老师认真严谨的授课使我对数理统计的学习迎难而上。