Sequential模型实现手写数字识别

本文介绍了如何利用TensorFlow的Sequential模型实现手写数字识别。通过建立模型、配置训练方法、训练和评估模型,实现了97%以上的识别准确率。
摘要由CSDN通过智能技术生成

Sequential模型实现手写数字识别

Sequential模型是一个神经网络的框架,只有一组输入和一组输出,各个层之间按照顺序先后堆叠。

一般来说使用Sequential搭建、使用、评估神经网络可以有以下几步:

1、建立模型

首先先导入需要的函数库和加载手写数字的训练集

import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
mnist = tf.keras.datasets.mnist
(train_x,train_y),(test_x,test_y) = mnist.load_data()

然后开始设计神经网络结构
因为输入的每张图片是28*28的黑白图片,类型为二维数组,所以在输入的时候要指定好输入的尺寸大小,这里我们将加载的测试集拉伸为784的一维张量(也可直接用Flatten()函数),并对数据进行归一化来加快数据的处理

X_train = train_x.reshape(60000,28*28)#共60000张图片
X_test = test_x.reshape(10000
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值