Sequential模型实现手写数字识别
Sequential模型是一个神经网络的框架,只有一组输入和一组输出,各个层之间按照顺序先后堆叠。
一般来说使用Sequential搭建、使用、评估神经网络可以有以下几步:
1、建立模型
首先先导入需要的函数库和加载手写数字的训练集
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
mnist = tf.keras.datasets.mnist
(train_x,train_y),(test_x,test_y) = mnist.load_data()
然后开始设计神经网络结构
因为输入的每张图片是28*28的黑白图片,类型为二维数组,所以在输入的时候要指定好输入的尺寸大小,这里我们将加载的测试集拉伸为784的一维张量(也可直接用Flatten()函数),并对数据进行归一化来加快数据的处理
X_train = train_x.reshape(60000,28*28)#共60000张图片
X_test = test_x.reshape(10000