UVA12888 Count LCM

题目大意

求:
∑ i = 1 n ∑ j = 1 m [ lcm ⁡ ( i , j ) = i × j ] \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}[\operatorname{lcm}(i,j)=i \times j] i=1nj=1m[lcm(i,j)=i×j]

T T T 组数据。

1 ≤ T ≤ 1000 , 1 ≤ n , m ≤ 1 0 9 1 \leq T \leq 1000,1 \leq n,m \leq 10^9 1T1000,1n,m109

解题思路

首先,根据题意,有 lcm ⁡ ( i , j ) = i × j gcd ⁡ ( i , j ) = i × j \operatorname{lcm}(i,j)=\frac{i\times j}{\gcd(i,j)}=i \times j lcm(i,j)=gcd(i,j)i×j=i×j

所以当且仅当 gcd ⁡ ( i , j ) = 1 \gcd(i,j)=1 gcd(i,j)=1 时, ( i , j ) (i,j) (i,j) 才是满足题意的一组解。

所以原式可推为:

∑ i = 1 n ∑ j = 1 m [ gcd ⁡ ( i , j ) = 1 ] \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}[\gcd(i,j)=1] i=1nj=1m[gcd(i,j)=1]
根据:
∑ d ∣ n μ ( d ) = { 1 n = 1 0 n ≠ 1 \sum\limits_{d|n} \mu(d) = \begin{cases} 1 && n=1 \\ 0 && n \ne 1\end{cases} dnμ(d)={10n=1n=1

有:
∑ i = 1 n ∑ j = 1 m ∑ x ∣ i ∑ x ∣ j μ ( x ) \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}\sum\limits_{x|i}\sum\limits_{x|j}\mu(x) i=1nj=1mxixjμ(x)
上式可变为:
∑ x = 1 n ∑ i = 1 n ∑ j = 1 m [ x ∣ i ] [ x ∣ j ] μ ( x ) \sum\limits_{x=1}^{n}\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}[x|i][x|j]\mu(x) x=1ni=1nj=1m[xi][xj]μ(x)
那么有:
∑ x = 1 n μ ( x ) ⌊ n x ⌋ ⌊ m x ⌋ \sum\limits_{x=1}^{n}\mu(x)\left\lfloor\frac{n}{x}\right\rfloor\left\lfloor\frac{m}{x}\right\rfloor x=1nμ(x)xnxm
数论分块即可 O ( n ) \mathcal O(n) O(n) 预处理, O ( n ) \mathcal O(\sqrt n) O(n ) 单次询问。

关于莫比乌斯函数的数论分块可参考我的博客 浅谈莫比乌斯反演

CODE

#include <bits/stdc++.h>

#define ll long long

using namespace std;

const int maxn = 1000000 + 10;

ll n, m, prim[maxn], vis[maxn], mu[maxn], cnt, ans;

void init(ll n)
{
    ll i, j;
    mu[1] = 1;
    for (i = 2; i <= n; i++)
    {
        if (!vis[i])
        {
            prim[++cnt] = i;
            mu[i] = -1;
        }
        for (j = 1; i * prim[j] <= n && j <= cnt; j++)
        {
            vis[i * prim[j]] = 1;
            if (i % prim[j] == 0)
                break;
            mu[i * prim[j]] = -mu[i];
        }
    }
    for (i = 1; i <= n; i++)
        mu[i] += mu[i - 1];
}

signed main()
{
    init(1000000);
    ll T, l, r;
    scanf("%lld", &T);
    while (T--)
    {
        scanf("%lld%lld", &n, &m);
        if (n > m)
            swap(n, m);
        ans = 0;
        for (l = 1; l <= n; l = r + 1)
        {
            r = min(n / (n / l), m / (m / l));
            ans += (n / l) * (m / l) * (mu[r] - mu[l - 1]);
        }
        printf("%lld\n", ans);
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值