新星计划Day4【数据结构与算法】 稀疏数组与队列
👩💻博客主页:京与旧铺的博客主页
✨欢迎关注🖱点赞🎀收藏⭐留言✒
🔮本文由京与旧铺原创,csdn首发!
😘系列专栏:java学习
💻首发时间:🎞2022年4月28日🎠
🎨你做三四月的事,八九月就会有答案,一起加油吧
🀄如果觉得博主的文章还不错的话,请三连支持一下博主哦
🎧最后的话,作者是一个新人,在很多方面还做的不好,欢迎大佬指正,一起学习哦,冲冲冲
💬推荐一款模拟面试、刷题神器👉点击进入网站
🛒导航小助手🎪
⛳001 几个经典的算法面试题(1)
字符串匹配问题::
有一个字符串 str1= ““硅硅谷 尚硅谷你尚硅 尚硅谷你尚硅谷你尚硅你好””,和一个子串 str2=“尚硅谷你尚硅你”
现在要判断 str1 是否含有 str2, 如果存在,就返回第一次出现的位置, 如果没有,则返回-1
要求用最快的速度来完成匹配
你的思路是什么?
暴力匹配
KMP算法《部分匹配表》
汉诺塔游戏, 请完成汉诺塔游戏的代码: 要求:1) 将A塔的所有圆盘移动到C塔。并且规定,在2) 小圆盘上不能放大圆盘,3)在三根柱子之间一次只能移动一个圆盘
使用到分治算法.
🛶002 几个经典的算法面试题(2)
八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例。该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即:任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。【92】
使用到回溯算法
高斯认为有76种方案。1854年在柏林的象棋杂志上不同的作者发表了40种不同的解,后来有人用图论的方法解出92种结果。计算机发明后,有多种计算机语言可以解决此问题
马踏棋盘算法介绍和游戏演示
马踏棋盘算法也被称为骑士周游问题
将马随机放在国际象棋的8×8棋盘Board[0~7][0~7]的某个方格中,马按走棋规则(马走日字)进行移动。要求每个方格只进入一次,走遍棋盘上全部64个方格
会使用到图的深度优化遍历算法(DFS) + 贪心算法优化
🎩003 内容介绍与授课方式
数据结构和算法的重要性
算法是程序的灵魂,优秀的程序可以在海量数据计算时,依然保持高速计算
一般来讲 程序会使用了内存计算框架(比如Spark)和缓存技术(比如Redis等)来优化程序,再深入的思考一下,这些计算框架和缓存技术, 它的核心功能是哪个部分呢?
拿实际工作经历来说, 在Unix下开发服务器程序,功能是要支持上千万人同时在线, 在上线前,做内测,一切OK,可上线后,服务器就支撑不住了, 公司的CTO对代码进行优化,再次上线,坚如磐石。你就能感受到程序是有灵魂的,就是算法。
目前程序员面试的门槛越来越高,很多一线IT公司(大厂),都会有数据结构和算法面试题(负责的告诉你,肯定有的)
如果你不想永远都是代码工人,那就花时间来研究下数据结构和算法
👝006 线性结构与非线性结构
线性结构
- 线性结构作为最常用的数据结构,其特点是数据元素之间存在一对一的线性关系。
- 线性结构有两种不同的存储结构,即顺序存储结构(数组)和链式存储结构(链表)。顺序存储结构的线性表称为顺序表,顺序表中的存储元素是连续的。
- 链式存储的线性表称为链表,链表中的存储元素不一定是连续的,元素节点中存放数据元素以及相邻元素的地址信息。
- 线性结构常见的有:数组、队列、链表和栈,后面我会相信讲解。
非线性结构
非线性结构包括:二维数组,多维数组,广义表,树结构,图结构
🥋007 稀疏数组的应用场景
当一个数组中大部分元素为0,或者为同一个值的数组时,可以使用稀疏数组来保存该数组
稀疏数组的处理方法是
- 记录数组一共有几行几列,有多少个不同的值
- 把具有不同值的元素的行列及值记录在一个小规模数组中,从而缩小程序的规模
🎎008 稀疏数组转换的思路分析
二维数组转稀疏数组的思路
1.遍历原始的二维数组,得到要保存的有效数据个数
2.根据sum就可以创建稀疏数组sparseArr int[sum+1][3]
3.将二维数组的有效数据存入到稀疏数组中
稀疏数组转原始的二维数组的思路
1.先读取稀疏数组的第一行,根据第一行的数据,创建原始的二维数组,比如上面的chessArr2=int[11][11]
2.在读取稀疏数组后几行的数据, 并赋给原始的二维数组即可
🥌009 稀疏数组的代码实现
public class SparseArray{
public static void main(String[] args){
//创建一个原始的数组11*11
//0:表示没有棋子,1表示黑子,2表示蓝子
int chessArr1[][]=new int[11][11];
chessArr1[1][2]=1;
chessArr1[2][4]=2;
//输出原始的二维数组
System.out.println("原始的二维数组");
for(int[] row:chessArr1){
for(int data:row){
System.out.println("%d\t",data);
}
System.out.println();
//将二维数组转换为稀疏数组的思想
//1.先遍历二维数组 得到非0数据的个数
int sum=0;
for(int i=0;i<11;i++){
for(int j=0;j<11;j++){
if(chessArr1[i]