《矩阵理论》笔记 0 —线性代数矩阵相关知识回顾

线性代数矩阵相关知识回顾

一、矩阵定义

m × n m \times n m×n 个数 a i j a_{ij} aij( i = 1 , 2 , . . . , m ; j = 1 , 2 , . . . , n i=1,2,...,m;j=1,2,...,n i=1,2,...,m;j=1,2,...,n) 排成的 m m m n n n列 的矩形表格。
[ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ] \begin{bmatrix} a_{11}& a_{12}& \cdots& a_{1n}\\ a_{21}& a_{22}& \cdots& a_{2n}\\ \vdots& \vdots& \ddots& \vdots\\ a_{m1}& a_{m2}& \cdots& a_{mn}\\ \end{bmatrix} a11a21am1a12a22am2a1na2namn
称为一个 m × n m\times n m×n 矩阵,记为 A A A ( a i j ) m × n (a_{ij})_{m\times n} (aij)m×n ( i = 1 , 2 , . . . , m ; j = 1 , 2 , . . . , n i=1,2,...,m;j=1,2,...,n i=1,2,...,m;j=1,2,...,n)。

m = n m=n m=n,称 A A A n n n方阵


二、矩阵基本运算

1、相等

 矩阵同型,且元素对应相等

2、加法

 两个矩阵同型的时候,可以相加 A + B = C A+B=C A+B=C
 其中, c i j = a i j + b i j c_{ij}=a_{ij}+b_{ij} cij=aij+bij

3、数乘

k k k是一个数, A A A是一个 m × n m\times n m×n的矩阵。

$
kA=Ak=k\begin{bmatrix}
a_{11}& a_{12}& \cdots& a_{1n}\
a_{21}& a_{22}& \cdots& a_{2n}\
\vdots& \vdots& \ddots& \vdots\
a_{m1}& a_{m2}& \cdots& a_{mn}\
\end{bmatrix}=
\begin{bmatrix}
ka_{11}& ka_{12}& \cdots& ka_{1n}\
ka_{21}& ka_{22}& \cdots& ka_{2n}\
\vdots& \vdots& \ddots& \vdots\
ka_{m1}& ka_{m2}& \cdots& ka_{mn}\
\end{bmatrix}=(ka_{ij})_{m\times n}
$

4、线性运算

 加法运算和数乘运算统称矩阵的线性运算

5、运算律

交换律

A + B = B + A A+B=B+A A+B=B+A (同型矩阵)

结合律

( A + B ) + C = A + ( B + C ) (A+B)+C=A+(B+C) (A+B)+C=A+(B+C) (同型矩阵)

分配律

k ( A + B ) = k A + k B k(A+B)=kA+kB k(A+B)=kA+kB ;

( k + j ) A = k A + j A (k+j)A=kA+jA (k+j)A=kA+jA (同型矩阵, k k k为任意常数)

数和矩阵相乘的结合律

k ( l A ) = ( k l ) A = l ( k A ) k(lA)=(kl)A=l(kA) k(lA)=(kl)A=l(kA)( k 、 l k、l kl为任意常数)

行列式相关性质

$\left|\begin{array}{cccc}
kA
\end{array}\right|
$ = k n ∣ A ∣ =k^n|A| =knA ( n ≥ 2 , k ≠ 0 , 1 n\geq 2, k\neq 0,1 n2,k=0,1)


三、矩阵其他变换

1、矩阵的乘法

A A A m × s m \times s m×s 矩阵, B B B s × n s \times n s×n 矩阵( A A A 的列数等于 B B B 的行数), A A A B B B 可乘,乘积 A B AB AB m × n m\times n m×n 的矩阵。

C = A B C=AB C=AB,

c i j = ∑ k = 1 s a i k b k j c_{ij}=\sum \limits_{k=1}^{s}a_{ik}b_{kj} cij=k=1saikbkj= a i 1 b 1 j + a i 2 b 2 j + a i 3 b 3 j + . . . + a i s b s j a_{i1}b_{1j}+a_{i2}b_{2j}+a_{i3}b_{3j}+ ... +a_{is}b_{sj} ai1b1j+ai2b2j+ai3b3j+...+aisbsj   ( i = 1 , 2 , . . . , m ; j = 1 , 2 , . . . , n i=1,2,...,m;j=1,2,...,n i=1,2,...,m;j=1,2,...,n)。

  • 运算律
    (1)结合律
    ( A m × s B s × r ) C r × n = A m × s ( B s × r C r × n ) (A_{m\times s}B_{s \times r})C_{r\times n}=A_{m\times s}(B_{s \times r}C_{r\times n}) (Am×sBs×r)Cr×n=Am×s(Bs×rCr×n)

    (2)分配律
    ( A m × s + B m × s ) C s × n = A m × s C s × n + B m × s C s × n (A_{m\times s}+B_{m \times s})C_{s\times n}=A_{m\times s}C_{s\times n}+B_{m\times s}C_{s\times n} (Am×s+Bm×s)Cs×n=Am×sCs×n+Bm×sCs×n

    (3)数乘和乘法的结合律
    ( k A m × s ) B s × n = A m × s ( k B s × n ) = k ( A m × s B s × n ) (kA_{m\times s})B_{s\times n}=A_{m\times s}(kB_{s\times n})=k(A_{m\times s}B_{s\times n}) (kAm×s)Bs×n=Am×s(kBs×n)=k(Am×sBs×n)
  • 注意
    • A B ≠ B A AB\neq BA AB=BA
    • A B = O ⇏ A = O 或 B = O AB=O \nRightarrow A=O或B=O AB=OA=OB=O
    • A B = A C , A ≠ O ⇏ B = C AB=AC,A\neq O \nRightarrow B=C AB=AC,A=OB=C

2、转置矩阵

将矩阵行列互换, m × n m\times n m×n 转换成 n × m n\times m n×m,为 A T A^T AT

  • ( A T ) T = A (A^T)^T=A (AT)T=A;

  • ( A + B ) T = A T + B T (A+B)^T=A^T+B^T (A+B)T=AT+BT;

  • ( k A ) T = k A T (kA)^T=kA^T (kA)T=kAT;

  • ( A B ) T = B T A T (AB)^T=B^TA^T (AB)T=BTAT;

  • m = n m=n m=n 时, ∣ A T ∣ = ∣ A ∣ |A^T|= | A| AT=A

3、向量的内积和正交

3.1 内积

对 向量 α ⃗ \vec\alpha α = = = [ a 1 , a 2 , ⋯   , a n ] T \begin{bmatrix} a_{1}, a_{2}, \cdots, a_{n}\\ \end{bmatrix}^T [a1,a2,,an]T , 向量 β ⃗ \vec\beta β = = = [ b 1 , b 2 , ⋯   , b n ] T \begin{bmatrix} b_{1}, b_{2}, \cdots, b_{n}\\ \end{bmatrix}^T [b1,b2,,bn]T

α ⃗ T \vec\alpha ^T α T β ⃗ \vec\beta β = = = ∑ i = 1 n a i b i \sum \limits_{i=1}^{n} a_{i}b_{i} i=1naibi = = = a 1 b 1 + a 2 b 2 + . . . + a n b n a_{1}b_{1}+a_{2}b_{2}+...+a_{n}b_{n} a1b1+a2b2+...+anbn

   称为内积(是一个数),记为 ( α ⃗ \vec \alpha α , β ⃗ \vec\beta β )

3.2 正交

α ⃗ T \vec\alpha ^T α T β ⃗ \vec\beta β = 0 =0 =0 时,向量 α ⃗ \vec\alpha α β ⃗ \vec\beta β 是正交向量。

3.3 模

∥ α ⃗ ∥ \begin{Vmatrix} \vec\alpha \end{Vmatrix} α = = = ∑ i = 1 n a i 2 \sqrt {\sum \limits_{i=1}^{n} a_{i}^2} i=1nai2

   称为向量 α ⃗ \vec\alpha α 的模(长度)。

   模为 1 时,称为 单位向量

3.4 标准正交向量组

列向量组 α ⃗ 1 \vec\alpha _{1} α 1 , α ⃗ 2 \vec\alpha _{2} α 2,…, α ⃗ n \vec\alpha _{n} α n 满足

α ⃗ i T α ⃗ j \vec\alpha_{i}^T \vec\alpha_{j} α iTα j = { 0 , i ≠ j 1 , i = j \begin{cases} 0 &, &i\neq j \\\\ 1 &, &i=j \\ \end{cases} 01,,i=ji=j

  则称其为标准或单位正交向量组

3.5 施密特标准正交化

有线性无关向量组 α ⃗ 1 \vec\alpha _{1} α 1 , α ⃗ 2 \vec\alpha _{2} α 2

  • 标准正交化:

β ⃗ 1 \vec\beta_{1} β 1 = = = α ⃗ 1 \vec\alpha _{1} α 1

β ⃗ 2 \vec\beta_{2} β 2 = = = α ⃗ 2 − ( α ⃗ 2 , β ⃗ 1 ) ( β ⃗ 1 , β ⃗ 1 ) β ⃗ 1 \vec\alpha_{2}-\frac{(\vec\alpha_{2},\vec\beta_{1})}{(\vec\beta_{1},\vec\beta_{1})}\vec\beta_{1} α 2(β 1,β 1)(α 2,β 1)β 1

  即为正交向量组

  • 再单位化:

η ⃗ 1 \vec\eta_{1} η 1 = = = β ⃗ 1 ∥ β ⃗ 1 ∥ \frac{\vec\beta_{1}}{\begin{Vmatrix} \vec\beta_{1} \end{Vmatrix}} β 1β 1

η ⃗ 2 \vec\eta_{2} η 2 = = = β ⃗ 2 ∥ β ⃗ 2 ∥ \frac{\vec\beta_{2}}{\begin{Vmatrix} \vec\beta_{2} \end{Vmatrix}} β 2β 2

  即为标准正交向量组

4、方阵

4.1 方阵的幂

A A A 是一个 n n n方阵 A m = A A . . . A ( m 个 A 相 乘 ) A^m=AA...A (m个A 相乘) Am=AA...A(mA) 称为 A A A m m m 次幂。

特别的例子:

( A + B ) 2 = ( A + B ) ( A + B ) = A 2 + A B + B A + B 2 (A+B)^2=(A+B)(A+B)=A^2+AB+BA+B^2 (A+B)2=(A+B)(A+B)=A2+AB+BA+B2

( A B ) m = ( A B ) ( A B ) . . . ( A B ) ( m 个 A B 相 乘 ) ≠ A m B m (AB)^m=(AB)(AB)...(AB)(m个AB相乘)\neq A^mB^m (AB)m=(AB)(AB)...(AB)(mAB)=AmBm

f ( x ) = a 0 + a 1 x + . . . + a n x n f(x)=a_{0}+a_{1}x+...+a_{n}x^n f(x)=a0+a1x+...+anxn ⇒ \Rightarrow f ( A ) = a 0 E + a 1 A + . . . + a n A n f(A)=a_{0}E+a_{1}A+...+a_{n}A^n f(A)=a0E+a1A+...+anAn

4.2 方阵的乘积

A 、 B A、B AB是同阶方阵 ⇒ \Rightarrow ∣ A B ∣ = ∣ A ∣ ∣ B ∣ |AB|=|A||B| AB=AB

4.3 特殊的方阵

  零矩阵:各元素均为 0 0 0 ,记为 O O O

  单位矩阵:主对角元素均为 1 1 1 ,其余元素均为 0 0 0 n n n 阶方阵,称为 n n n 阶单位矩阵,记为 E E E I I I

  数量矩阵:数 k k k 和单位矩阵的乘积所得矩阵。

  对角矩阵:非主对角元素均为 0 0 0 的矩阵。

  上(下)三角矩阵:当 i > ( < ) j i>(<)j i>(<)j时, a i j = 0 a_{ij}=0 aij=0的矩阵称为上(下)三角矩阵。

  对称矩阵:满足 A T = A A^T=A AT=A的矩阵, a i j = a j i a_{ij}=a_{ji} aij=aji
  反对称矩阵:满足 − A T = A -A^T=A AT=A的矩阵, − a i j = a j i -a_{ij}=a_{ji} aij=aji
  正交矩阵:满足 A T A = E A^TA=E ATA=E ⇔ \Leftrightarrow A T = A − 1 A^T=A^{-1} AT=A1 ⇔ \Leftrightarrow A A A的行(列)向量组是标准正交向量组。

5、分块矩阵

横纵线将矩阵分为若干小块,每个小块都看作一个元素。

A A A = = = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ] \begin{bmatrix} a_{11}& a_{12}& \cdots& a_{1n}\\ a_{21}& a_{22}& \cdots& a_{2n}\\ \vdots& \vdots& \ddots& \vdots\\ a_{m1}& a_{m2}& \cdots& a_{mn}\\ \end{bmatrix} a11a21am1a12a22am2a1na2namn = [ A 1 A 2 ⋮ A m ] \begin{bmatrix} A_{1}\\ A_{2}\\ \vdots\\ A_{m}\\ \end{bmatrix} A1A2Am , A i A_{i} Ai为一个子块。

注意 A 、 B A、B AB分别为m、n阶方阵,则

[ A O O B ] n \begin{bmatrix} A & O\\ O & B\\ \end{bmatrix}^n [AOOB]n = = = [ A n O O B n ] \begin{bmatrix} A^n & O\\ O & B^n\\ \end{bmatrix} [AnOOBn]


四、矩阵的逆

A 、 B A、B AB 均为 n n n 阶方阵, E E E n n n 阶单位矩阵,若 A B = B A = E AB=BA=E AB=BA=E A A A 是可逆矩阵,而 A A A 的逆矩阵是 B B B,且逆矩阵唯一,记为 A − 1 A^{-1} A1

A A A可逆 ⇔ \Leftrightarrow ∣ A ∣ ≠ 0 |A|\neq 0 A=0

A − 1 = 1 ∣ A ∣ A ∗ A^{-1}=\frac{1}{|A|}A^* A1=A1A

1、性质

  • ( A − 1 ) − 1 = A (A^{-1})^{-1}=A (A1)1=A

  • k ≠ 0 k\neq 0 k=0,则 ( k A ) − 1 = 1 k A − 1 (kA)^{-1}=\frac{1}{k}A^{-1} (kA)1=k1A1

  • A 、 B A、B AB同阶可逆,则 ( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)1=B1A1 (穿脱原则)

  • A A A可逆 ⇒ \Rightarrow A T A^T AT可逆。 ( A T ) − 1 = ( A − 1 ) T (A^T)^{-1}=(A^{-1})^T (AT)1=(A1)T

  • ∣ A − 1 ∣ |A^{-1}| A1 = = = ∣ A ∣ − 1 |A|^{-1} A1

2、求取逆矩阵

(1) 拆解 A A A A − 1 = ( B C ) − 1 = C − 1 B − 1 A^{-1}=(BC)^{-1}=C^{-1}B^{-1} A1=(BC)1=C1B1

(2) A − 1 = 1 ∣ A ∣ A ∗ A^{-1}=\frac{1}{|A|}A^* A1=A1A

(3) 特殊形式的矩阵:

    [ A O O B ] − 1 = [ A − 1 O O B − 1 ] \begin{bmatrix} A & O\\ O & B\\ \end{bmatrix}^{-1}=\begin{bmatrix} A^{-1} & O\\ O & B^{-1}\\ \end{bmatrix} [AOOB]1=[A1OOB1]

    [ O A B O ] − 1 = [ O B − 1 A − 1 O ] \begin{bmatrix} O & A\\ B & O\\ \end{bmatrix}^{-1}=\begin{bmatrix} O & B^{-1}\\ A^{-1} & O\\ \end{bmatrix} [OBAO]1=[OA1B1O]

五、伴随矩阵

1、余子式

 在 n n n阶行列式中,把 a i j a_{ij} aij 所在的第 i i i 行和第 j j j 列划去,留下来的 n − 1 n-1 n1 阶行列式,叫做 a i j a_{ij} aij 的余子式,记作 M i j M_{ij} Mij

2、代数余子式

A i j = ( − 1 ) i + j M i j A_{ij}=(-1)^{i+j}M_{ij} Aij=(1)i+jMij

  • 行列式的值 等于 任一行(列)的各元素与其对用的代数余子式乘积之和。

∣ A ∣ = a i 1 A i 1 + a i 2 A i 2 + . . . + a i n A i n |A|=a_{i1}A_{i1}+a_{i2}A_{i2}+...+a_{in}A_{in} A=ai1Ai1+ai2Ai2+...+ainAin ( i = 1 , 2 , . . . , n i=1,2,...,n i=1,2,...,n)

   或
∣ A ∣ = a 1 j A 1 j + a 2 j A 2 j + . . . + a n j A n j |A|=a_{1j}A_{1j}+a_{2j}A_{2j}+...+a_{nj}A_{nj} A=a1jA1j+a2jA2j+...+anjAnj ( j = 1 , 2 , . . . , n j=1,2,...,n j=1,2,...,n)

3、伴随矩阵

行列式 ∣ A ∣ |A| A的各个元素的代数余子式转置排列后,所得矩阵称为 n n n阶方阵 A A A的伴随矩阵,记为 A ∗ A^{*} A

A ∗ = [ A 11 A 21 ⋯ A n 1 A 12 A 22 ⋯ A n 2 ⋮ ⋮ ⋮ A 1 n A 2 n ⋯ A n n ] A^{*}=\begin{bmatrix} A_{11} & A_{21} & \cdots & A_{n1}\\ A_{12} & A_{22} & \cdots & A_{n2}\\ \vdots & \vdots & & \vdots\\ A_{1n} & A_{2n} & \cdots & A_{nn}\\ \end{bmatrix} A=A11A12A1nA21A22A2nAn1An2Ann

4、性质

  • 任意 n n n阶方阵

    • A A ∗ = A ∗ A = ∣ A ∣ E AA^*=A^*A=|A|E AA=AA=AE

    • ∣ A ∗ ∣ = ∣ A ∣ n − 1 |A^*|=|A|^{n-1} A=An1

  • 任意 n n n阶方阵, ∣ A ∣ ≠ 0 |A|\neq 0 A=0时:  ( k A ) ∗ = k n − 1 A ∗ (kA)^*=k^{n-1}A^* (kA)=kn1A

  • ( A T ) ∗ = ( A ∗ ) T (A^T)^*=(A^*)^T (AT)=(A)T

  • ( A − 1 ) ∗ = ( A ∗ ) − 1 (A^{-1})^*=(A^*)^{-1} (A1)=(A)1

  • ( A B ) ∗ = B ∗ A ∗ (AB)^*=B^*A^* (AB)=BA

  • ( A ∗ ) ∗ = ∣ A ∣ n − 2 A (A^*)^*=|A|^{n-2}A (A)=An2A


六、初等矩阵

1、初等行(列)变换

1.倍乘  一个非零常数 乘 矩阵的某行(列)
2.互换  互换矩阵中的某两行(列)的位置
3.倍加  某行(列)的 k k k倍加到另一行(列)

2、初等矩阵

各教材表示方法有异

  • E i ( k ) ( k ≠ 0 ) E_{i}(k)(k\neq 0) Ei(k)(k=0) :单位矩阵第 i i i行(列)乘 k k k

  • E i j E_{ij} Eij :单位矩阵交换第 i i i j j j行(列)。

  • E i j ( k ) E_{ij}(k) Eij(k):单位矩阵第 i i i行(列)乘 k k k倍,加到第 j j j行(列)上。

3、 初等变换求取逆矩阵

[   A   ⋮   E   ] [\ A \ \vdots \ E \ ] [ A  E ] 进行初等行变换 → \rightarrow [   E   ⋮   A − 1   ] [\ E \ \vdots \ A^{-1} \ ] [ E  A1 ]

[ A ⋯ E ] \begin{bmatrix} A\\ \cdots \\ E\\ \end{bmatrix} AE 进行初等列变换 → \rightarrow [ E ⋯ A − 1 ] \begin{bmatrix} E\\ \cdots \\ A^{-1}\\ \end{bmatrix} EA1

七、矩阵的秩与等价矩阵

1、秩

1.1 概念

A A A m × n m\times n m×n矩阵,若存在 k k k 阶子式不为 0 0 0 ,而任意 k + 1 k+1 k+1阶子式全为 0 0 0 ,则 r ( A ) = k r(A)=k r(A)=k

1.2 性质

1. A A A n n n阶方阵,则有:  r ( A ) = n r(A)=n r(A)=n ⇔ \Leftrightarrow ∣ A ∣ ≠ 0 |A|\neq 0 A=0 ⇔ \Leftrightarrow A A A可逆

2. 初等变换不改变秩 P 、 Q P、Q PQ可逆,则 r ( A m × n ) = r ( P m × m A ) = r ( A Q n × n ) = r ( P A Q ) r(A_{m\times n})=r(P_{m\times m}A)=r(AQ_{n\times n})=r(PAQ) r(Am×n)=r(Pm×mA)=r(AQn×n)=r(PAQ)

3. 0 ⩽ r ( A m × n ) ⩽ m i n ( m , n ) 0 \leqslant r(A_{m\times n}) \leqslant min(m,n) 0r(Am×n)min(m,n)

4. r ( k A ) = r ( A ) ( k ≠ 0 ) r(kA)=r(A)(k \neq 0) r(kA)=r(A)(k=0)

5. r ( A B ) ⩽ m i n ( r ( A ) , r ( B ) ) r(AB) \leqslant min(r(A),r(B)) r(AB)min(r(A),r(B))

6. r ( A + B ) ⩽ r ( A ) + r ( B ) r(A+B) \leqslant r(A)+r(B) r(A+B)r(A)+r(B)

7. 方阵: r ( A ∗ ) = { n , r ( A ) = n         1 , r ( A ) = n − 1 0 , r ( A ) ≤ n − 1 r(A^*)= \begin{cases} n &, &r(A)=n \ \ \ \ \ \ \ \\ 1 &, &r(A)=n-1 \\ 0 &, &r(A)\leq n-1 \end{cases} r(A)=n10,,,r(A)=n       r(A)=n1r(A)n1

2、等价矩阵

2.1 概念

A 、 B A、B AB 均为 m × n m\times n m×n 矩阵,若存在可逆矩阵 P m × m P_{m\times m} Pm×m Q n × n Q_{n \times n} Qn×n ,使得 P A Q = B PAQ=B PAQ=B ,则称 A , B A,B A,B 是等价矩阵,记作 A ≅ B A\cong B AB

2.2 等价标准型

A A A m × n m\times n m×n 矩阵,且等价于 [ E r O O O ] \begin{bmatrix} E_{r} & O\\ O & O\\ \end{bmatrix} [ErOOO] ,其中 r r r 等于 r ( A ) r(A) r(A) 。那么, [ E r O O O ] \begin{bmatrix} E_{r} & O\\ O & O\\ \end{bmatrix} [ErOOO] 称为 A A A 的等价标准型。

等价标准型是唯一的,必存在可逆矩阵 P 、 Q P、Q PQ ,使得 P A Q = PAQ= PAQ= [ E r O O O ] \begin{bmatrix} E_{r} & O\\ O & O\\ \end{bmatrix} [ErOOO]

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

frozendure

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值