控制系统的数学描述
概述
数学模型:
动态模型、静态模型
建模途径:
理论推导法、实验测试法
系统微分方程式的建立
一般步骤
(1) 确定输入变量和输出变量;
(2) 根据物理或化学定律,列出系统(或元件)的原始方程式;
(3) 找出中间变量与其它因素的关系式;
(4) 消去中间变量, 得到输入输出关系方程式;
(5) 若所求输入输出关系为非线性方程,则需进行线性化;
(6) 标准化。将输入项及各阶导数放到方程的右边,将输出项及各阶导数放到方程的左边,然后按降幂的顺序排列。
非线性方程线性化
拉普拉斯变换
定义
常用变换
性质
控制系统的传递函数
定义
线性(或线性化)定常系统在零初始条件下,输出量的拉氏变换与输入量的拉氏变换之比。
性质
- 传递函数是复变量s的有理真分式函数,一般m≤n ,且所有系数均为实数。
- 传递函数只取决于系统和元件的结构和参数,与外作用及初始条件无关。
- 一个传递函数只能表示一个输入对一个输出的函数关系。
- 令s = 0,则 G ( 0 ) = b 0 a 0 G(0)={b_0 \over a_0} G(0)=a0b0 称为传递系数,或静态放大系数。
- 传递函数有一定的零、极点分布图与之对应,它们表征了系统的动态性能。
典型环节
(1) 比例环节
G
(
s
)
=
K
G(s)= K
G(s)=K
(2) 惯性环节
G
(
s
)
=
K
T
s
+
1
G(s)={K \over {Ts+1}}
G(s)=Ts+1K
(3) 积分环节
G
(
s
)
=
1
T
S
G(s)={1 \over {TS}}
G(s)=TS1
(4) 微分环节
G
(
s
)
=
T
s
G(s)=Ts
G(s)=Ts
(5) 比例-微分环节
G
(
s
)
=
K
c
(
1
+
T
s
)
G(s)=K_c(1+Ts)
G(s)=Kc(1+Ts)
(6) 振荡环节
G
(
s
)
=
1
T
2
s
2
+
2
T
ζ
s
+
1
=
ω
n
2
s
2
+
2
ω
n
ζ
s
+
ω
n
2
G(s)={1 \over {T^2s^2+2T\zeta s+1}}={\omega_n^2 \over {s^2+2\omega_n\zeta{s}+\omega_n^2}}
G(s)=T2s2+2Tζs+11=s2+2ωnζs+ωn2ωn2
(7) 迟滞环节
G
(
s
)
=
e
−
τ
s
G(s)=e^{-\tau{s}}
G(s)=e−τs
控制系统结构图与信号流图
结构图
步骤
(1)建立控制系统各元部件的微分方程。
(2)对各元件的微分方程进行拉氏变换,并作出各元件的结构图。
(3)按照系统中各变量的传递顺序,依次将各元件的结构图连接起来,置系统的输入变量于左端,输出变量于右端。
负载效应
后一级网络作为前一级网络的负载,对前级网络的输出电压u1产生影响。
等效变换
基本组成:串联连接、并联连接、反馈连接
等效变换法则
(1) 综合点(比较点)的移动
(2)引出点(分支点)的移动
信号流图
定义
由节点和支路组成的信号传递网络。
常用术语
- 输入节点: 只有输出支路的节点。
- 输出节点: 只有输入支路的节点称为输出节点。
- 混合节点: 既有输入支路又有输出支路的节点。
- 通路:从某一节点开始沿支路箭头方向经过各相连支路到另一节点所构成的路径。
- 前向通路:从输入节点开始并终止于输出节点且与其它节点相交不多于一次的通路。
- 回路:如果通路的终点就是通路的起点,并且与任何其它节点相交不多于一次的通路。
- 不接触回路:各回路之间没有任何公共节点。
梅逊公式
表达式:
控制系统的传递函数
- r(t)作用下开环传递函数
- r(t)作用下闭环传递函数
- n(t)作用下闭环传递函数
- 系统总输出
- 闭环系统的误差传递函数