描述
GCD(the Greatest Common Divisor):最大公因数。
LCM(the Least Common Multiple):最小公倍数。
请问是否存在两数 c 和 d 满足 GCD(c,d)= a,LCM(c,d)= b 并且 c != a,c != b,d != a,d != b。
输出
针对每组案例,如果存在这样的 c 和 d,那么输出它们。
如果不存在这样的 c 和 d,则输出-1。
每组案例输出结束以后都要换行。
题解
首先a和b的最小公倍数=ab/gcd(a,b),所以可以求得两个数的积等于它们最大公约数和它们最小公倍数的积,所以只需要暴力另i从2开始枚举,判断它能否被c整除,如果可以再判断i和n/最大公约数和读入的最大公约数是否相同即可。
然后不妨假设a和b的最大公约数为x,最小公倍数为y,从中可得到
a= x * p1
b= x * p2
其中p1和p2都为质数,所以可以得到最小公倍数 y= x * p1 * p2
最后移项得到 y/x=p1p2 也就是说 y 一定可以整除 x。所以当y/x!=0的时候一定无解
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long int ll;
ll gcd(ll a, ll b)
{
while (b ^= a ^= b ^= a %= b);
return a;
}//快速求公约数
int main()
{
ll a, b;
cin >> a >> b;
bool f = false;
ll c = a * b;
if (b % a != 0)
{
cout << -1 << endl;
}
else
{
for (ll i = 2; i <= sqrt(c); i++)
{
if (c % i == 0 && gcd(i, c / i) == a && i != a && i != b && c / i != a && c / i != b)
{
cout << i << " " << c / i << endl;
f = true;
break;
}
}
if (!f)
{
cout << -1 << endl;
}
}
return 0;
}