1046 Shortest Distance(前缀和)

1046 Shortest Distance(前缀和)

0、题目

The task is really simple: given N exits on a highway which forms a simple cycle, you are supposed to tell the shortest distance between any pair of exits.

Input Specification:

Each input file contains one test case. For each case, the first line contains an integer N (in [3,105]), followed by N integer distances D1 D2 ⋯ D**N, where D**i is the distance between the i-th and the (i+1)-st exits, and D**N is between the N-th and the 1st exits. All the numbers in a line are separated by a space. The second line gives a positive integer M (≤104), with M lines follow, each contains a pair of exit numbers, provided that the exits are numbered from 1 to N. It is guaranteed that the total round trip distance is no more than 107.

Output Specification:

For each test case, print your results in M lines, each contains the shortest distance between the corresponding given pair of exits.

Sample Input:

5 1 2 4 14 9
3
1 3
2 5
4 1

Sample Output:

3
10
7

1、大致题意

给一个环上边的距离,求指定点之间的最短距离。

2、基本思路

简单模拟。所有结点连起来会形成一个环形。dis[i]存储第1个结点到第i个结点的下一个结点的距离。sum保存整个路径一圈的总和值。求得结果就是dis[right – 1] – dis[left – 1]sum – dis[right – 1] – dis[left – 1]中较小的那一个

注意:可能leftright的顺序颠倒了,这时候要把leftright的值交换~

3、AC代码

#include <iostream>
#include <vector>
using namespace std;
int main() {
    int n;
    scanf("%d", &n);
    vector<int> dis(n + 1);
    int sum = 0, left, right, cnt;
    for(int i = 1; i <= n; i++) {
        int temp;
        scanf("%d", &temp);
        sum += temp;
        dis[i] = sum;
    }
    scanf("%d", &cnt);
    for(int i = 0; i < cnt; i++) {
        scanf("%d %d", &left, &right);
        if(left > right)
            swap(left, right);
        int temp = dis[right - 1] - dis[left - 1];
        printf("%d\n", min(temp, sum - temp));
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值