ONNX Runtime学习之InferenceSession模块

ONNXRuntime库学习之InferenceSession(模块)

一、简介

onnxruntime.InferenceSession 是 ONNX Runtime 中用于加载和运行 ONNX 模型的核心模块。它提供了一种灵活的方式来在多种硬件设备(如 CPU、GPU)上执行 ONNX 模型推理。通过 InferenceSession,我们可以高效地加载模型并进行推理操作,适合在生产环境中使用。

二、语法和参数

语法
onnxruntime.InferenceSession(path_or_bytes, sess_options=None, providers=None, provider_options=None)
参数
  • path_or_bytes:表示要加载的 ONNX 模型的路径(文件路径)或二进制数据(字节流)。
  • sess_options(可选):SessionOptions 对象,用于配置会话的运行选项。
  • providers(可选):指定模型推理时的硬件提供者列表。例如,['CPUExecutionProvider'] 表示只使用 CPU。
  • provider_options(可选):为每个提供者配置特定的选项。下面列出两个最常用的选项
    • CPUExecutionProvider
    • CUDAExecutionProvider
返回值

返回一个 InferenceSession 对象,代表已加载的 ONNX 模型会话。

三、实例

3.1 加载并使用CPU进行推理
  • 代码
import onnxruntime as ort
import numpy as np

# 加载ONNX模型
session = ort.InferenceSession('model.onnx')

# 创建输入数据
input_data = np.random.rand(1, 3, 224, 224).astype(np.float32)

# 获取输入名称
input_name = session.get_inputs()[0].name

# 执行推理
outputs = session.run(None, {input_name: input_data})

# 打印输出结果
print(outputs)
  • 输出
[array([[0.1, 0.2, 0.7]], dtype=float32)]
3.2 使用GPU进行推理
  • 代码
import onnxruntime as ort
import numpy as np

# 加载ONNX模型并指定GPU提供者
session = ort.InferenceSession('model.onnx', providers=['CUDAExecutionProvider'])

# 创建输入数据
input_data = np.random.rand(1, 3, 224, 224).astype(np.float32)

# 获取输入名称
input_name = session.get_inputs()[0].name

# 执行推理
outputs = session.run(None, {input_name: input_data})

# 打印输出结果
print(outputs)
  • 输出
[array([[0.05, 0.15, 0.8]], dtype=float32)]

四、注意事项

  1. InferenceSession 支持多个硬件提供者(如 CPU、GPU),但需要确保指定的提供者在系统中已正确安装并配置。
  2. 在执行推理时,输入数据的形状和类型必须与模型的输入要求匹配,否则会抛出错误。
  3. 如果模型较大,加载模型可能会消耗较多内存资源,建议根据需要配置硬件提供者。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值