ONNX Runtime学习之InferenceSession模块

ONNXRuntime库学习之InferenceSession(模块)

一、简介

onnxruntime.InferenceSession 是 ONNX Runtime 中用于加载和运行 ONNX 模型的核心模块。它提供了一种灵活的方式来在多种硬件设备(如 CPU、GPU)上执行 ONNX 模型推理。通过 InferenceSession,我们可以高效地加载模型并进行推理操作,适合在生产环境中使用。

二、语法和参数

语法
onnxruntime.InferenceSession(path_or_bytes, sess_options=None, providers=None, provider_options=None)
参数
  • path_or_bytes:表示要加载的 ONNX 模型的路径(文件路径)或二进制数据(字节流)。
  • sess_options(可选):SessionOptions 对象,用于配置会话的运行选项。
  • providers(可选):指定模型推理时的硬件提供者列表。例如,['CPUExecutionProvider'] 表示只使用 CPU。
  • provider_options(可选):为每个提供者配置特定的选项。下面列出两个最常用的选项
    • CPUExecutionProvider
    • CUDAExecutionProvider
返回值

返回一个 InferenceSession 对象,代表已

<think>好的,我现在需要处理用户提供的关于ONNX模型加载的代码段。用户给出的代码是: elif onnx: if dnn: net = cv2.dnn.readNetFromONNX(w) else: check_requirements(('onnx', 'onnxruntime')) import onnxruntime session = onnxruntime.InferenceSession(w, None) 首先,我要理解这段代码的结构和目的。代码处于一个条件分支中,当`onnx`为True时执行,然后根据`dnn`标志选择使用OpenCV的DNN模块还是ONNX Runtime来加载和运行ONNX模型。 接下来,我需要拆解每个部分的功能。首先,`elif onnx:`说明这是在处理ONNX模型的情况,可能前面的条件分支处理的是其他框架如PyTorch或TensorFlow。然后内部的if-else根据`dnn`的值选择不同的加载方式。 对于`if dnn:`的情况,使用OpenCV的`dnn.readNetFromONNX`方法加载ONNX模型。这里可能需要检查OpenCV的版本是否支持ONNX模型,特别是某些较新的操作符。用户注释中提到了`check_requirements(('opencv-python>=4.5.4',))`,但被注释掉了,所以可能需要提醒用户确保版本兼容性。 在else分支中,代码先检查依赖项`onnx`和`onnxruntime`,然后导入onnxruntime并创建推理会话。这里需要注意`check_requirements`函数的作用,可能是用户自定义的函数,用来确保所需库已安装。 接下来,我需要考虑用户可能的疑问,比如两种加载方式的区别,适用场景,性能差异,以及可能遇到的常见问题。例如,OpenCV的DNN模块可能对某些模型支持不够好,而ONNX Runtime则提供了更全面的支持和优化,尤其是在不同硬件上的加速。 另外,需要解释`onnxruntime.InferenceSession`的参数,比如这里的`None`可能是指 providers 参数,默认使用所有可用的执行提供程序,比如CPU、CUDA等。而`w`应该是ONNX模型文件的路径。 还要注意错误处理,比如当模型文件损坏或版本不兼容时,这两种方法可能抛出的异常类型,以及如何解决这些问题。例如,使用ONNX Runtime时可能需要安装对应的CUDA版本以获得GPU支持。 用户可能的深层需求是希望了解如何根据不同的环境选择最适合的ONNX模型加载方式,以及如何确保代码的兼容性和性能。因此,在解释时需要强调两种方法的优缺点,帮助用户做出合适的选择。 最后,需要组织回答结构,先解析代码结构,再分解核心逻辑,然后讨论应用场景和常见问题,确保信息清晰易懂,符合用户之前获得的详细解析风格。</think>--- ### 代码结构解析 ```python elif onnx: # ONNX推理分支 if dnn: # 使用OpenCV DNN模块 net = cv2.dnn.readNetFromONNX(w) # 加载ONNX模型 else: # 使用ONNX Runtime check_requirements(('onnx', 'onnxruntime')) # 依赖检查 import onnxruntime session = onnxruntime.InferenceSession(w, None) # 创建推理会话 ``` --- ### 核心逻辑分解 #### 1. 框架选择分支 ```python elif onnx: # 当选择ONNX推理时触发 ``` - **典型场景**:通常在模型部署时出现,用于切换不同推理后端 - 常见选项对比: | 框架 | 硬件支持 | 性能优势 | 功能完整性 | |---------------|-----------------------|-------------------|-------------------| | OpenCV DNN | CPU为主 | 轻量快速 | 支持常见OP | | ONNX Runtime | CPU/GPU/VPU等异构计算 | 深度优化加速 | 完整OP支持 | #### 2. OpenCV DNN模式 ```python if dnn: net = cv2.dnn.readNetFromONNX(w) ``` - **技术细节**: - **版本要求**:OpenCV >= 4.5.4(部分新OP需要更高版本) - **硬件加速**:可通过`net.setPreferableBackend()`设置计算后端 ```python net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA) # 启用CUDA加速 net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA) ``` - **输入处理**:需手动进行预处理 ```python blob = cv2.dnn.blobFromImage(image, scalefactor=1/255.0, size=(224,224)) net.setInput(blob) output = net.forward() ``` #### 3. ONNX Runtime模式 ```python else: session = onnxruntime.InferenceSession(w, None) ``` - **关键配置**: - **Providers参数**:控制硬件加速方式(默认自动选择可用设备) ```python # 显式指定执行设备 providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] session = onnxruntime.InferenceSession(w, providers=providers) ``` - **会话优化**:可启用图优化提升性能 ```python sess_options = onnxruntime.SessionOptions() sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL session = onnxruntime.InferenceSession(w, sess_options) ``` --- ### 典型应用场景 #### 多后端部署架构 ```python # 根据设备能力选择推理后端 if mobile_device: # 移动端部署 use_opencv_dnn() elif server_with_GPU: # 服务器GPU加速 use_onnxruntime() else: # 普通CPU环境 choose_lightweight_backend() ``` --- ### 关键参数对比 | 参数/方法 | OpenCV DNN | ONNX Runtime | |--------------------------|-------------------------------------|-----------------------------------| | **输入格式** | BLOB (NCHW布局) | Numpy数组 (自动形状检查) | | **预处理** | 需手动完成 | 需自行处理 | | **动态维度支持** | 有限支持 | 完全支持 | | **量化模型支持** | 仅支持部分量化格式 | 支持INT8/QDQ格式 | | **多线程控制** | 通过OpenCV并行框架 | 通过SessionOptions配置 | --- ### 性能优化技巧 #### OpenCV DNN加速 ```python # 启用Vulkan加速(需编译支持) cv2.ocl.setUseOpenCL(True) net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV) net.setPreferableTarget(cv2.dnn.DNN_TARGET_OPENCL) # 使用Intel推理引擎 net.setPreferableBackend(cv2.dnn.DNN_BACKEND_INFERENCE_ENGINE) ``` #### ONNX Runtime优化 ```python # 启用内存映射加速大模型加载 session_options.enable_mem_pattern = False # 关闭内存整理提升吞吐 # 设置线程数 session_options.intra_op_num_threads = 4 session_options.inter_op_num_threads = 2 # 混合精度推理 session_options.enable_cpu_mem_arena = True ``` --- ### 常见问题排查 1. **OP不支持错误** - OpenCV DNN:升级到最新版本或回退模型版本 - ONNX Runtime:使用`onnxruntime.transformers`进行模型优化 2. **形状不匹配** ```python # 检查输入维度 print(session.get_inputs()[0].shape) # 显示动态维度(如batch维度为"None") ``` 3. **GPU加速失效** ```python # 验证CUDA可用性 print(onnxruntime.get_device()) # 应显示'GPU' # 检查CUDA/cuDNN版本匹配 ``` --- ### 完整部署示例 ```python def run_onnx_inference(image_path, use_dnn=False): # 统一预处理 image = cv2.imread(image_path) blob = preprocess(image) # 自定义预处理函数 if use_dnn: # OpenCV DNN推理 net = cv2.dnn.readNetFromONNX("model.onnx") net.setInput(blob) output = net.forward() else: # ONNX Runtime推理 session = onnxruntime.InferenceSession("model.onnx") input_name = session.get_inputs()[0].name output = session.run(None, {input_name: blob}) return postprocess(output) # 根据硬件自动选择后端 auto_backend = 'dnn' if is_arm_device else 'onnxruntime' result = run_onnx_inference("test.jpg", use_dnn=(auto_backend=='dnn')) ``` --- 通过这种设计,代码实现了: 1. **跨平台兼容**:适应不同硬件环境 2. **性能最优化**:充分利用各后端优势 3. **部署灵活性**:无需重新训练即可切换推理引擎
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值