感知损失的计算pytorch实现

感知损失计算

from torchvision.models import vgg16
import torch
import torch.nn.functional as F
class LossNetwork(torch.nn.Module):
    def __init__(self, vgg_model):
        super(LossNetwork, self).__init__()
        self.vgg_layers = vgg_model
        self.layer_name_mapping = {
            '3': "relu1_2",
            '8': "relu2_2",
            '15': "relu3_3"
        }

    def output_features(self, x):
        output = {}
        for name, module in self.vgg_layers._modules.items():
            x = module(x)
            if name in self.layer_name_mapping:
                output[self.layer_name_mapping[name]] = x
        return list(output.values())

    def forward(self, dehaze, gt):
        loss = []
        dehaze_features = self.output_features(dehaze)
        gt_features = self.output_features(gt)
        for dehaze_feature, gt_feature in zip(dehaze_features, gt_features):
            loss.append(F.mse_loss(dehaze_feature, gt_feature))

        return sum(loss)/len(loss)
criterion = []
vgg_model = vgg16(pretrained=True).features[:16]
vgg_model = vgg_model.to(device)
criterion.append(LossNetwork(vgg_model).to(device))
vgg_loss = criterion[2](generate_img,label_img)





很抱歉,单层感知机无法拟合XOR函数的问题已经被证明,因此单层感知机已经不再使用。但是,我们可以介绍一下多层感知机的PyTorch实现。 以下是一个简单的多层感知机的PyTorch实现: ```python import torch import torch.nn as nn # 定义多层感知机模型 class MLP(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(MLP, self).__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.relu = nn.ReLU() self.fc2 = nn.Linear(hidden_size, output_size) def forward(self, x): out = self.fc1(x) out = self.relu(out) out = self.fc2(out) return out # 定义模型参数 input_size = 2 hidden_size = 5 output_size = 2 # 初始化模型 model = MLP(input_size, hidden_size, output_size) # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=0.01) # 定义训练数据 x_train = torch.tensor([[0, 0], [0, 1], [1, 0], [1, 1]], dtype=torch.float32) y_train = torch.tensor([0, 1, 1, 0], dtype=torch.long) # 训练模型 num_epochs = 10000 for epoch in range(num_epochs): # 前向传播 outputs = model(x_train) loss = criterion(outputs, y_train) # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() # 每1000次迭代输出一次损失值 if (epoch+1) % 1000 == 0: print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item())) # 测试模型 with torch.no_grad(): outputs = model(x_train) _, predicted = torch.max(outputs.data, 1) print('Predicted:', predicted) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值